A.M.E. C. E. A
MAIN EXAMINATION
AUGUST - DECEMBER 2018 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

Q1. a) Define the following terms as used in hypothesis
i) Type I error
ii) Type II error
iii) The critical region
iv) The power of a test
b) An experimentis performed four times where the probability of success is θ.The hypothesis to be tested is such that $H_{0}: \theta=0.6$ against $H_{1}: \theta=$ 0.25 where the null hypothesis is rejected if the number of successes is less than 3. Determine:
i) Probability of type I error (2 marks)
ii) Probability of type II error (2marks)
iii) The power of the test when $\theta=\frac{1}{7}$
(2marks)
c) i) State the conditions under which t-test is used in testing hypothesis about the mean.
(3 marks)
ii) A teacher administered a CAT to his students whose total marks were 30 . He suspected that the mean mark should be 12 marks. The marks of 10 of his students were:

11	14	13	12	13	12	13	11	12	14

Is there a reason to believe that the teacher is right at $\alpha=0.05$ level of significance?
(5 marks)
d) Suppose X is a single observation from a population with probability density function given by
$f(x)=\left\{\begin{array}{c}\theta x^{\theta-1}, 0<x<1 \\ 0 \quad \text {, elsewhere }\end{array}\right.$
Determine the most powerful test, with significance level $\alpha=0.05$ for testing the hypothesis
$H_{0}: \theta=$ 3against $H_{1}: \theta=2$
e) Let X be a single observation from a population with probability density function
$f(x, \theta)=\left\{\begin{array}{c}\frac{\theta^{x} e^{-\theta}}{x!} \\ 0, \text { elsewhere }\end{array}\right.$ for $x=0,1,2 \ldots \ldots$
where $\theta \geq 0$.
Find the likelihood ratio critical region for testing the hypothesis
$H_{0}: \theta=$ 2against $H_{1}: \theta \neq 2$
(6 marks)
Q2. a) Let X be normally distributed with mean μ (unknown) and variance σ^{2} (known). Determine the critical region for testing $H_{0}: \mu=\mu_{0}$ against $H_{1}: \mu<$ μ_{0} at α level of significance.
(10 marks)
b) The values $21,22,18,27,32,25,24,19,26,33,29,19$ and 28 were observed from a normal population whose variance is 27 . Test the hypothesis $H_{0}: \mu=$ 27 against $H_{1}: \mu<27$ at $\alpha=0.05$ level of significance.
(10 marks)
Q3. a) Suppose that X is normally distributed with mean μ and unknown variance σ^{2}. Derive the critical region for testing the hypothesis $H_{0}: \sigma^{2}=$ $\sigma_{0}{ }^{2}$ vs $H_{1}: \sigma^{2}>{\sigma_{0}}^{2}$ at α level of significance if a random sample of size n is taken from the population.
(10 marks)
b) The amount of a chemical thought to be a causative factor to a skin disease on some laboratory guinea pigs, is measured for a randomly selected sample of guinea pigs in $\mathrm{mgm} / \mathrm{cm}^{3}$ with the following results:
$5.21,5.24,5.87,6.11,5.55,5,48,5.38,5.29,5.25,5.69,5.42,5.63,5.49,5.52$, and 5.60.

If the mean for guinea pigs with the disease is known to be 5.50 , test the hypothesis $H_{0}: \sigma=0.3$ vs $H_{1}: \sigma>0.3$ at $\alpha=0.05$ level of significance.
(9 marks)
Q4. a) Let $x_{1}, x_{2}, \ldots \ldots, x_{m}$ be a random sample from a normal population with mean μ_{1} and variance $\sigma_{1}{ }^{2}$. Let $y_{1}, y_{2}, \ldots \ldots, y_{n}$ be another sample from a normal population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$. Suppose that $\sigma_{1}{ }^{2}=$ $\sigma_{2}{ }^{2}=\sigma^{2}$. Show that the likelihood ratio test for $H_{0}: \mu_{1}=\mu_{2}=\mu$ against $H_{1}: \mu_{1} \neq \mu_{2}$ can be based on the critical region $\omega=\{\underline{x}, \underline{y},: t>c\}$
$t=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\left[\sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\right]\left(\frac{1}{m}+\frac{1}{n}\right)}{m+n-2}}}$
where $\underline{x}=\left(x_{1}, x_{2}, \ldots \ldots, x_{m}\right), \underline{y}=\left(y_{1}, y_{2}, \ldots \ldots, y_{n}\right), \bar{x}$ and \bar{y} are the respective sample means.
(13 marks)
b) Two samples of a newly discovered insect are taken from two different populations living in two different regions of rainforest. The weights of the first sample in milligrams are $12,33,24,27,16,29,35,30,21,17$ and 25 . The weights of the second sample are $18,23,14,16,18,19,21,25,22,23,17$ and 20. Test the hypothesis that the two populations have the same mean at $\alpha=0.05$, assuming that the populations are normal with a common variance.
(7 marks)
Q5. a) Let $x_{1}, x_{2}, \ldots \ldots, x_{m}$ be a random sample from a normal population with mean μ_{1} and variance $\sigma_{1}{ }^{2}$. Let $y_{1}, y_{2}, \ldots \ldots, y_{n}$ be another sample from a normal population with mean μ_{2} and variance $\sigma_{2}{ }^{2}$. Develop the test for the hypothesis $H_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ against $H_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2}$
(13marks)
b) Njiris High School and Thika High School had a Mathematics competition where Njiris presented 8 students and Thika 11 students. Their scores were as follows:
Njiris: 73, 62, 41, 55, 69, 83, 47, 49
Thika: 68, 77, 40, 58, 79, 43, 89, 52, 69, 60, 39
Test the hypothesis that the variance in both groups is equal at $\alpha=0.05$.
(7marks)
END

