A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST - DECEMBER 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
REGULAR PROGRAMME

MAT 330: ORDINARY DIFFERENTIAL EQUATIONS II

Date: DECEMBER 2018

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Explain the difference between an IVP and a BVP. 3 marks
b) Express the differential equation $\frac{d^{4} x}{d t^{4}}-2 \frac{d^{3} x}{d t^{3}}+5 \frac{d^{2} x}{d t^{2}}+3 \frac{d x}{d t}-8 x=6 \sin 4 t$ as a system of first order differential equations. 4 marks
c) Use the Wronskian to determine whether each of the following functions are linearly independent or not:-
i) $\begin{array}{ll}f_{1}(x)=x, & f_{2}(x)=x^{2}, \quad f_{3}(x)=4 x-3 x^{2} \quad 4 \text { marks }\end{array}$
ii) $f_{1}(x)=1+x, \quad f_{2}(x)=x, \quad f_{3}(x)=x^{2} \quad 4$ marks
d) Let $x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0$.
i) Show that $y=x^{4}$ is a solution to the equation 4 marks
ii) Use reduction of order to find the second solution. 5 marks
e) Determine the singular points of the differential equation $2 x(x-2)^{2} y^{\prime \prime}+3 x y^{\prime}+(x-2) y=0$ and classify them as regular or irregular.

6 marks

Q2. a) The equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ is called a Bessel's equation.
i) Identify the order of this Bessel equation.

1 mark
ii) Show that $x=0$ is a regular singular point.

3 marks
iii) Assuming a Frobenius type solution, find the indicial roots

5 marks
iv) Find the solution of the equation for the different indicial roots obtained above.

9 marks
v) Hence (or otherwise), find the general solution of the equation.

2 marks

Q3.
a) Solve the system $\left\{\begin{array}{l}\frac{d x}{d t}-3 x-6 y=t^{2} \\ \frac{d y}{d t}+\frac{d x}{d t}-3 y=e^{t}\end{array}\right.$

10 marks
b) Given that $y(1)=2$, find $y(0.5)$ for $y^{\prime}=x^{2}+y^{2}$ using the modified Euler method with $n=10$.

10 marks
Q4. Let $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$.
a) Show that $x=0$ is a regular singular point.

3 marks
b) Assuming a Frobenius type solution, find the indicial roots

6 marks
c) Find the solution of the equation for the different indicial roots obtained above.

9 marks
d) Hence (or otherwise), find the general solution of the equation. 2 marks

Q5. The equation $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0$ is known as Legendre's equation of order n.
a) Find all the singularities of the equation.

2 marks
b) Determine the type (regular or irregular) of singularities obtained above.

2 marks
c) Find a series solution of the equation at $x=0$

12 marks
d) Determine the first two Legendre polynomials from your solution. 4 marks
END

