A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu
AUGUST - DECEMBER 2018 TRIMESTER
FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
 REGULAR PROGRAMME

ACS 300: ACTUARIAL MATHEMATICS I

Date: DECEMBER 2018

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions
Q1. a) Differentiate between annuity-due and immediate annuity. 3marks
b) i) By definition or otherwise, differentiate prospective reserve from retrospective reserve.
(3 marks)
ii) State the condition under which the prospective reserve would be equal to the retrospective reserve.
(2 marks)
c) Using the AM92 mortality table, look up A_{65} and \ddot{a}_{65} at 4% p.a interest. Hence verify that $A_{65}=1-\mathrm{d} \ddot{u}_{65}$
3marks
d) Calculate $\quad . \quad$ values for using AM92 mortality and 4\% pa interest $\quad a_{50: 15}{ }^{\prime}$ (5mks)
e) Prove that the variance of $a_{\bar{x}} \mid$ is:

$$
\operatorname{var}\left(\bar{a}_{\bar{T}_{x}}\right)=\frac{1}{\delta^{2}}\left[{ }^{2} \bar{A}_{x}-\left(\bar{A}_{x}\right)^{2}\right]
$$

(6 marks)
f) Calculate the expected present value and variance of the present value of an endowment assurance of 1 payable at the end of the year of death for a life aged 40 exact, with a term of 15 years.

Basis:
Mortality
AM92 Select
Rate of interest
Expenses
4\% per annum
Nil
(8 marks)
Q2. a) Briefly explain why we hold reserves in life insurance companies
(4 marks)
b) Evaluate the following functions, assuming the given basis:
i) $\quad \ddot{a}_{65: 20} \quad$ AM92 Ultimate mortality and interest at 4\% pa
ii) $\quad A_{68: 21} \quad$ AM92 Ultimate mortality and interest at 6\% pa (4 marks)
c) Let X be a random variable representing the present value of the benefits of a whole life assurance, and Y be a random variable representing the present value of the benefits of a temporary assurance with a term of n years. Both assurances have a sum assured of 1 payable at the end of the year of death and were issued to the same life aged x.
i) Describe the benefits provided by the contract which has a present value represented by the random variable $\mathrm{X}-\mathrm{Y}$
ii) Show that

$$
\operatorname{Cov}(X, Y)={ }^{2} A_{x \cdot n}-A_{x} * A_{x: n}
$$

And hence or otherwise that

$$
\operatorname{Var}(X-Y)={ }^{2} A_{x}-\left({ }_{n \mid} A_{x}\right)^{2}-{ }^{2} A_{x} \cdot n
$$

Where the functions A are determined using an interest rate rate of I, and the functions ${ }^{2} A$ are determined using an interest rate of $i^{2}-2 i$
(12marks)
Q3. a) In the context of net premiums for endowment assurance, explain the following premium symbols
i)

$$
P_{x: \eta \mid}=\frac{A_{x: \bar{\eta}}}{\ddot{a}_{x: \bar{\eta}}}
$$

ii)

$$
P\left(\bar{A}_{x: \bar{\eta}}\right)=\frac{\bar{A}_{x: \bar{\eta}}}{\ddot{a}_{x: \eta}}
$$

iii) $\quad P_{x: \bar{\eta}}^{(m)}=\frac{A_{x: \bar{\eta}}}{\ddot{a}(m: \bar{\eta})}$
(3marks)
b) A population with limiting age 100 has the following survival function:

$$
{ }_{t} p_{0}=\left(1-\frac{t}{100}\right)^{1 / 2} \quad \text { for } 0 \leq t \leq 100
$$

Calculate the complete expectation of life at age 50
(5marks)
c) Derive a formula for the variance of the profit earned by an insurance company offering an n-year endowment assurance policy to lives aged x. Assume that premiums are payable annually in advance and death benefits are payable at the end of the year of death.
(8marks)
d) A life aged exactly 33 purchases a whole life assurance policy with a sum assured of $£ 40,00$ payable at the end of the year of death. Premiums of $£ 520$ are payable annually in advance. Calculate the variance of the insurer's profit on this contract, assuming AM92 Ultimate mortality and 4\% pa interest.
(4marks)
Q4. a) Explain why premiums are normally paid in advance for an insurance policy
(2marks)
b) Prove that:
i) For temporary annuities:
$\bar{a}_{x: n} \cong \ddot{a}_{x: n}-\frac{1}{2}\left(1-v_{n}{ }_{n} p_{x}\right)$
(4 marks)
c) A level annuity of 1 pa is to be paid continuously to a 40 year-old male. On the basis of 4% pa interest and AM92 Ultimate mortality, calculate the expected present value of this annuity.
(2 marks)
d) A life aged exactly 50 buys a 15-year endowment assurance policy with a sum assured of $£ 50,000$ payable on maturity or at the end of the year of earlier death. Level premiums are payable monthly in advance. Calculate the monthly premium assuming AM92 Ultimate mortality and 4\% pa interest. Ignore expenses.
(6 marks)
e) Prove that

$$
\begin{equation*}
{ }_{n \mid} A_{x}=A_{x}-A_{x: n}=v^{n}{ }_{n} p_{x} A_{x+n} \tag{6marks}
\end{equation*}
$$

Q5. a) Prove that $\int_{0}^{1} v^{t} d t=\frac{i v}{\delta}$
(3 marks)
Hence or otherwise, By considering a term assurance policy as a series of one-year deferred term assurance policies, show that:

$$
\bar{A}_{x: n}^{1}=\frac{i}{\delta} A_{x: n}^{1}
$$

b) Calculate the annual premium for a term assurance with a term of 10 years to a male aged 30 , with a sum assured of $£ 500,000$, assuming AM92 Ultimate mortality and interest of 4% pa. Assume that the death benefit is paid at the end of the year of death.
(7marks)
c) John aged exactly 35, buys a term assurance policy that pays a benefit of $£ 100,000$ at the end of the year of his death if he dies before age 65 . What is the expected accumulated value of this benefit at time $10 ?$ Basis: AM92 Ultimate, 6\% pa Interest
END

