[®] THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST – DECEMBER 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

ACS 201: FUNDAMENTALS OF ACTUARIAL MATHEMATICS II

Date: DECEMBER 2018Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. Define the UDD assumption and hence prove that $_{t}q_{x} \Box tq_{x}$ a) 6 marks Define the following terms: b) Basis i) ii) Endowment assurance Annuity-due 3 marks iii) Define and calculate C) $_{5/9}q_{[40]+1}$ Basis: AM92 Select 6 marks d) A term assurance contract for a life aged 50 exact for a term of 10 years provides a benefit of £10,000 payable at the end of the year of death. Calculate the expected present value of benefits payable under this contract.

> Basis: Mortality: AM92 Select Interest: 4% per annum

e) A graph of $f_0(t)$, the probability density function for the random future lifetime, is plotted on the vertical axis, with *t* plotted on the horizontal axis, for data taken from the English Life Table No. 15(Males)

Cuea/ACD/EXM/AUGUST – DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

6marks

You are given that $f_0(t) = {}_t p_0 \mu_t$. You observe that the graph rises to a peak at around t=80 and then falls. Explain why the graph falls at around t=80 **3marks**

f)	Calculate $\ddot{a}_{40:\overline{4} }$ Basis:							
	Fro	From the following life table extract						
		Х						
		40	100,000					
		41	99,200					
		42	98,100					
		43	96,700					
		44	94,700					
	Inte	6 marks						
a)	i)	In the cont	ext of random variables, define Tx and	K _x 2marks				

Q2.

- ii) A person is aged exactly 55 years old. Suppose that she dies when she is aged 76 years and 197 days old. What are the values of T_{55} AND K₅₅ for this person? **2marks**
- b) The mortality of a certain population is governed by the life table function $I_x = 100-x$, $0 \le x < 100$. Calculate the values of the following expressions:

		i) μ_{30} ii) $_{10} p_{30}$ iii) $P(T_{30} < 20)$ iv) $P(K_{20} = 20)$		
		v) e_{30}^{o}		9marks
	c)	Calculate $A_{50\cdot\overline{4}}$		
		Basis:		
	Mortality		$q_{50} = 0.05$	
			$q_{51} = 0.06$	
			$q_{51+t} = 1.1 q_{50+t}$ for $t \ge 1$	
		Interest 6% p.a.		7marks
Q3.	a)	Calculate: ${}^{12}p_{[50]+1}$		
		Basis: AM92 Mortality		2marks

Cuea/ACD/EXM/AUGUST – DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- b) If T_x and K_x are random variables measuring the complete and curtate future lifetimes, respectively, for a life aged x, write down expressions for the following symbols in terms of expected values.
 - i) A_x ii) \overline{A}_1 x_{xn} iii) A_{xn}^{-1} iv) \overline{a}_x
 - v) \ddot{a}_{xv}

5 marks

8marks

- c) Calculate the values for the following functions, assuming AM92 mortality:
 - i) $\frac{\ddot{a}_{23:\overline{18}|}}{D_{50}}a_{50}$ ii) $\frac{D_{50}}{D_{40}}a_{50}$
- A whole life assurance provides a benefit of 100,000 payable immediately on the death of a male life who is now aged 45 exact. Calculate, showing all your workings: the EPV of this policy. Basis: Mortality AM92 Ultimate Rate of interest 4% p.a.
- Q4. a) Give a different example of selection shown by each of the following mortality tables:
 - i) ELT15
 - ii) PMA92C20 iii) AM92

3marks

- b) You are given that $p_{80} = 0.988$. Estimate ${}_{0.5}p_{80}$ assuming:
 - i) A uniform distribution of death between integer ages
 - ii) A constant force of mortality between integer age 4marks
- c) The table below is part of a mortality table used by a life insurance company to calculate survival probabilities for a special type of life insurance policy.

d)

Х	$l_{[x]}$	$l_{[x]+1}$	$l_{[x]+2}$	$l_{[x]+3}$	l_{x+4}
51	1537	1517	1502	1492	1483
52	1532	1512	1497	1487	1477
53	1525	1505	1490	1480	1470
54	1517	1499	1484	1474	1462
55	1512	1492	1477	1467	1453

Cuea/ACD/EXM/AUGUST – DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 3

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- i) Calculate the probability that a policy holder who was accepted for insurance exactly 2 years ago and is now aged exactly 55 will die at age 57 next birthday.
 4 marks
- ii) Calculate the corresponding probability for an individual of the same age who has been a policyholder for many years. **3 marks**
- iii) Comment on your answers to (i) and (ii). 2marks
- e) Calculate the exact value of $\overline{A}_{70:\overline{1}}^{\perp}$ assuming the force of mortality is constant between consecutive integer ages. Basis: Mortality: ELT15 (Males) Interest: 7.5% per annum 6 marks
- Q5. a) Explain what the following represent:
 - i) $l_{[x]+1}$ ii) d_x 2 marks
 - b) An assurance contract provides a death benefit of £1,000 payable immediately on death. The following basis is used: Force of mortality: $\mu_x = 0.05$ for all x Force of interest: $\delta = 0.04$ Calculate the EPV. 6marks
 - c) A population is subject to a constant force of mortality of 0.015. Calculate:
 - i) The probability that a life aged 20 exact will die before age 21.25 exact.
 - ii) The curtate expectation of a life aged 20 exact, **6marks**
 - d) Evaluate the following functions, assuming the given basis:
 - i) $\ddot{a}_{65:\overline{20}}$ AM92 Ultimate mortality and interest at 4% pa
 - ii) $A_{68.21}$ AM92 Ultimate mortality and interest at 6% pa **6marks**

END

Cuea/ACD/EXM/AUGUST – DECEMBER 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 4

ISO 9001:2008 Certified by the Kenya Bureau of Standards