A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST - DECEMBER 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
 REGULAR PROGRAMME

ACS 200: FINANCIAL MATHEMATICS I

Date: DECEMBER 2018

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) It is known that the accumulation function $a(t)$ is of the form $a t^{2}+b$.If $\$ 100$ invested at time 0 accumulates to $\$ 172$ at time 3 , find the accumulated value at time 10 of $\$ 100$ invested at time 5.
(5marks)
b) An investment of $\$ 10,000$ is made into a fund at time $t=0$. The fund develops the following balances over the next four years.

t	$A(t)$
0	$10,000.00$
1	$10,600.00$
2	$11,130.00$
3	$11,575.20$
4	$12,153.96$

i) If $\$ 5,000$ is invested at time $t=2$ under the same interest rate environment find the accumulated value of $\$ 5,000$ at time $t=4$.
ii) Find the effective rate of interest for year 3 and year 4
iii) Find the effective rate of discount for the fourth year. (5marks)
c) It is known that an investment of $\$ 500$ will increase to $\$ 4,000$ at the end of 30 years. Find the sum of the present value of three payments of $\$ 10,000$ each of which will occur at the end of 20,40 , and 60 years.
(3marks)
d) i) Find d_{5} if the rate of simple interest is 10%.
ii) Find d_{5} if the rate of simple discount is 10%.
e) The present value of two payments of $\$ 100$ each to be made at the end of n years and $2 n$ years is $\$ 100$. If $i=0.08$, find n
(4marks)
f) The cash price of an automobile is $\$ 10,000$. The buyer is willing to finance the purchase at 18% convertible monthly and to make payments of $\$ 250$ at the end of each month for four years. Find the down payment that will be necessary.
(5marks)
g) At what annual effective rate of interest is the present value of a series of payments of $\$ 1$ every six months forever, with the first payment made immediately, equal to $\$ 10$
(4marks)
Q2. a) i) Show that

$$
\frac{d^{3}}{(1-d)^{2}}=\frac{(i-d)^{2}}{1-v}
$$

ii) If i and d are equivalent rates of simple interest and discount over t periods show that

$$
\begin{equation*}
i-d=i d t \tag{5marks}
\end{equation*}
$$

b) A deposit of $\$ 1,000$ is invested at simple interest at time $t=0$. The rate of simple interest during year t is equal to $0.01 t$ for $t=$ $1,2,3,4$ and 5 . Find the total accumulated value of this investment at time $t=5$.
(3marks)
c) $\quad A$ deposits X into savings account at time 0 which pays interest at a nominal rate of i compounded semiannually. Bdeposits $2 X$ into a different savings account at time 0 which pays simple interest at annual rate of $i . A$ and B earn the same amount of interest during the last six months of the $8^{\text {th }}$ year. Calculate i.
(6marks)
d) $\quad A$ and B each open up new bank accounts at time 0 . Adeposits $\$ 100$ while B deposits $\$ 50$. Each account earns an effective discount rate of d. The amount of interest earned in A 's account during the $11^{\text {th }}$ year is equal to X. The amount of interest earned in B 's account during the $17^{\text {th }}$ year is also equal to X. Calculate X.
(6marks)

Q3. a) At a certain interest rate the present value of the following two payment patterns are equal.
i) $\quad \$ 200$ at the end of 5 years plus $\$ 500$ at the end of 10 years
ii) $\quad \$ 400.94$ at the end of 5 years.

At the same interest rate $\$ 100$ invested now plus $\$ 120$ invested at the end of 5 years will accumulate to P at the end of 10 years. Calculate P.
(5marks)
b) You invest $\$ 3000$ today and plan to invest another $\$ 2000$ two years from today. You plan to withdraw $\$ 5000$ in n years and another $\$ 5000$ in $n+5$ years, exactly liquidating your investment account at that time. If the effective rate of discount is equal to 6% find n.
(5marks)
c) It is known that an investment of $\$ 1000$ will accumulate to $\$ 1825$ at the end of 10 years. If it is assumed that the investment earns simple interest at rate i during the $1^{\text {st }}$ year, $2 i$ during the $2^{\text {nd }}$ year, $\ldots \ldots . ., 10 i$ during the $10^{\text {th }}$ year, find i.
(4marks)
d) You deposit $\$ 1000$ into a bank account. The bank credits interest at a nominal annual rate of i convertible semiannually for the first 7 years and a nominal annual of $2 i$ convertible quarterly for all years thereafter. The accumulated amount in the account at the end of 5 years is X. The accumulated amount in the account at the end of 10.5 years is $\$ 1980$. Calculate X to the nearest dollar.

Q4.
a) Find \ddot{u}_{8} if the effective rate of discount is 10%.
(3marks)
b) A worker aged 40 wishes to accumulate a fund for retirement by depositing $\$ 3000$ at the beginning of each year for 25 years. Starting at age 65 the worker plans to make 15 annual withdrawals at the beginning of each year. Assuming that all payments are certain to be made, find the amount of each withdrawal starting at age 65 to the nearest dollar, if the effective rate of interest is 8% during the first 25 years but only 7% thereafter. (6 marks)
c) Consider $a_{\overline{n+k} \mid}$ where n is a positive integer and $0<k<1$. Derive a formula for $a_{\overline{n+k \mid}}$ where a smaller payment than the regular payments is made
i) at time $n+k$
ii) on the date of the last regular payment (c.f. Balloon payment)
iii) one period after the last regular payment (c.f. Drop payment)
d) An investment of $\$ 1000$ is to be used to make payments of $\$ 100$ at the end of every year for as long as possible. If the fund earns an
annual effective rate of 5%, find how many regular payments can be made and find the amount of the smaller payment:
i) to be made on the date of the last regular payment
ii) to be made one year after the last regular payment
iii) to be made during the year following the last regular payment
(6marks)
Q5. a)
i) Show that the present value of an annuity which pays 1at the end of each k interest conversion periods, i being the rate of interest per interest conversion period and n the term of the annuity measured in interest conversion periods, is given by $\frac{a_{\bar{n} \mid}}{s_{\overline{k \mid}}}$.
ii) Deduce the formula for the present value of an annuity with similar features as in $\mathrm{a}(\mathrm{i})$ above but with payments made at the beginning of each k interest conversion periods.
(6marks)
b) An investment of $\$ 1000$ is to make payments of $\$ 100$ at the end of each year for as long as possible with a smaller final payment to be made at the time of the last regular payment. If interest is 7\% convertible semiannually, find the number of payments and the amount of the total final payment.
(8marks)
c) Consider an annuity immediate with a term of n periods in which payments begin at P and increase by Q per period thereafter, i being the interest rate per period, see time diagram below:

Show that the present value, A, of the annuity Is given by

$$
A=P a_{n}+Q \frac{a_{n}-n v^{n}}{i}
$$

Hence or otherwise deduce expressions for $i)(I a)_{\bar{n} \mid}$, increasing annuity in which $P=1$ and $Q=1$.
ii) $(D a)_{\bar{n} \mid}$, decreasing annuity in which $P=n$ and $Q=-1$ (6marks)
END

