THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

MAY – JULY 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER AND LIBRARY SCIENCE

PART TIME PROGRAMME

CMT 310: OBJECT ORIENTED SYSTEMS ANALYSIS AND DESIGN

Date: JULY 2018 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other TWO Questions

- Q1. a) Briefly state why Object Oriented approach to software development is important to the Software industry. (2 marks)
 - b) State the relationship between object oriented design, programming and object oriented language. (3 marks)
 - c) Use a school management system scenario to demonstrate the following object oriented approach concepts.
 (12marks)
 - i) objects
 - ii) classes
 - iii) inheritance
 - iv) polymorphism
 - d) Discuss the application of the following object oriented programming scope specifiers:
 - i) Public

(9 marks)

- ii) new
- iii) protected
- e) Explain **TWO** designing approaches used in software design. (4 marks)
- Q2. a) Explain using example the concept of the Data Dictionary. (4 marks)

b)		Differen	ntiate t	oetween c	onesion and	coupling	•		(4 marks)
c))	i) ii) i)	llowing teri Modulariz Polymorpl Encapsula	ation hism				(6 Marks)
d)	Differe	ntiate	between v	erification a	nd validat	tion in sy	stem analysis	(2 marks)
e	€)	Evalua	te FC	UR requir	ements of e	licitation	techniqu	es.	(4 marks)
Q3.		a) State	e THR	EE project	t estimation	technique	es used i	n software en	gineering. (3 marks)
		b) State	FOU	R respons	sibilities that	a project	manage	r shoulders in	a project. (4 marks)
		c) Discu	uss pr	oject estim	nation techni	iques maj	orly used	l software cre	ation. (4 marks)
		d) State	FOU	R activities	s involved in	the risk r	manager	nent process.	(4 marks)
		e) Highl	light th	ne compor	nents of grap	ohical use	r interfac	e.	(2 marks)
		f) Using	nece	ssary illus	tration, expla	ain the co	ncept of	DFD.	(3 marks)
Q4.		a) State THREE benefits of using inheritance.						(3 marks)	
		,	scuss iswer.	FOUR for	ms of inheri	tance and	l use illus	stration to den	nonstrate your (4 marks)
		c) Stat	e and	explain TI	HREE types	of softwa	ıre existir	ng in the world	d today. (6 marks)
		d) Write	e a C-	++ progran	n that adds t	three inte	gers exp	licitly.	(5 marks)
Q5.		e) Iden	tify T\	NO model	s suitable fo	r system	design.		(2 Marks)
		a) Discı	uss T\	NO levels	of software	testing us	sed in sof	tware techniq	ues. (2marks)
		b) Desc	cribe th	ne concep	t of agile me	thod tech	nique in	software deve	elopment. (4 marks)
		a) Des	cribe •	TWO type:	s of docume	entations s	stating th	eir importance	e. (4 marks)

- b) Compare and contrast the iterative model versus the V-model. (4marks)
- c) Explain **THREE** types of constructors in object oriented programming. **(6 marks)**

END