THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

U

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER AND LIBRARY SCIENCE

REGULAR PROGRAMME

CMT 100: PHYSICS FOR COMPUTER SCIENCE

Date: JULY 2018	Duration: 2 Hours	
INSTRUCTIONS: Answer Question ONE and any other TWO Questions		

Q1.	a)	i)	Name the standard international units used for the n the following electrical quantities: charge, electrical n inductance and magnetic flux.	neasurement of resistance, (4 marks)
		ii)	State Gauss law.	(2 marks)
	b)	A 10	0V battery is connected across a resistor and causes mA to flow. Determine the resistance of the resisto is now reduced to 25V, what will be the new value of flowing?	s a current of 5 or. If the voltage of the current (4 marks)
c) i) A co co		i)	A current of 2mA flows in a radio resistor R when a connected. What are the values of the resistance a conductance?	p.d of 4V is nd the (4 marks)
		ii)	An electric heating element to dissipate 480 watts of to be made from Nichrome ribbon 1mm wide and th 0.05mm. Calculate the length of the ribbon required of Nichrome is $1.1 \times 10^{-6} \Omega m$.	on 240V mains is hickness of d if the resistivity (5 Marks)
	d)	i)	State Kirchhoff laws of electricity.	(2 marks)

Cuea/ACD/EXM/MAY – JULY 2017 / COMPUTER / LIBRARY SCIENCE

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- ii) A magnetic flux of $400\mu w b$ passing through a coil of 1200 turns is reversed in 0.1 seconds. Calculate the average value of the emf induced in the coil. (3 marks)
- e) i) State Coulomb law of electrostatics. (1 mark)
 - ii) Three capacitors have capacitances, 2μ F, 4μ F and 8μ F respectively. Find the total capacitance when they are connected in series. (3 marks)
- f) Draw electric field lines over two point charges when they are both positive. (2 marks)
- Q2. a) Two capacitors A and B are connected in series across a 100V supply and it is observed that the p.ds across them are 60V and 40V respectively. A capacitor of 2μF is now connected in parallel with A and p.d across B rises to 90V. Calculate the capacitance of A and B in microfarads. (10 marks)
 - b) Derive a relationship for the total resistance when resistors are connected in parallel. (4 marks)
 - c) Calculate the velocity of the electrons in a conductor having 10²⁹ free electrons per cubic metre and a cross-sectional area of 2mm² when the current flow is 23mA.
 (6 Marks)
- Q3. a) An electron of charge e=1.6x10⁻¹⁹C is situated in a uniform electric field of intensity 120000V/m. Find the force on it, its acceleration and the time it takes to travel 20mm from rest. (Electron mass, m=9.1x10⁻³¹kg). (10 marks)
 - b) Two positive point charges of 12 and 8µC respectively are 10cm apart.
 Find the work done in bringing them 4cm closer so they are 6cm apart.
 (10 marks)
- Q4. a) What is the peak value of an alternating current which produces three times the heat per second as a direct current of 2A in a resistor R? (5 Marks)

Cuea/ACD/EXM/MAY – JULY 2017 / COMPUTER / LIBRARY SCIENCE

Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

b) Determine the power flowing into an electrical sink for which the voltage is 340sinwt V and current is 5.6sinwt A, where w=0.2π rad/s. Also determine the energy absorbed (or generated) during a 10s period starting at time, t=0.
 (8 marks)

	c)	An a.c voltage of 4V peak is connected to a 100 Ω resistor R.		
		i) What is the phase of current and voltage?	(1mark)	
		ii) Calculate the current in R in mA.	(3marks)	
		iii) What is the power in R in mW?	(3marks)	
Q5.	a)	An alternating voltage has the equation		
		V = 141.4 sin 377t		
		Determine the values of		
		i) Root mean square voltage	(3 marks)	
		ii) Frequency	(3 marks)	
		iii) The instantaneous voltage when t = 3ms.	(3 marks)	
	b)	A circuit having a resistance of 12Ω , an inductance of 0.15H and a		
		capacitance of 100 µ F in series, is connected across a	a 100V, 50Hz	
		supply. Calculate the		

i)	Impedance	(4 marks)
ii)	current	(1 mark)
i)	Voltage across R, L and C.	(3 marks)
ii)	Phase difference between the current an	d the supply voltage
,		(3 marks)

END

ISO 9001:2008 Certified by the Kenya Bureau of Standards