
iii) The frequency of X-rays is given as 4×10^{17}. Determine the energy possessed by the X-rays
g) i) What is Compton scattering
(1 mark)
ii) Describe the terms in the Compton scattering equation below
(4 marks)

$$
\lambda_{2}-\lambda_{1}=\frac{h}{m c}(1-\cos \theta)
$$

Q2. a) Using a well labeled diagram of an X-Ray tube, describe how X-rays are produced
(6 marks)
b) Only 0.2% of the energy of an electron is transferred to X-Rays. Where do the rest of the energy go? Explain your answer
c) What is the effect of increasing the accelerating voltage on the X-Ray produced
d) A potential difference of 40 kV is applied across an x-ray tube . calculate:
i) Energy of electrons as they arrive at the target
(3 marks)
ii) Velocity of electron at the target
(4 marks)
e) State any two uses of X-rays
(2 marks)

Q3. a) Describe Rutherford 's alpha scattering experiment hence the Rutherford's atomic model
b) List the four Bohr's postulates
(4 marks)
c) Show that the Bohr radius is given by

$$
r_{1}=\frac{\hbar^{2}}{k e^{2} m}
$$

d) Differentiate between absorption and emission spectra
(2 marks)

Q4. a) What is Compton scattering
(2 marks)
b) With the aid of a well labeled diagram derive the Compton scattering formula
(10 marks)

$$
\lambda_{2}-\lambda_{1}=\frac{h}{m c}(1-\cos \theta)
$$

c) An x-ray photon with a wavelength of $9.73 \times 10^{-2} \mathrm{~nm}$ scatters off a free electron at an angle of 30°. Determine
i) the change in wavelength for the photon
(3 marks)
ii) the wavelength of the scattered photon
(2 marks)
iii) the kinetic energy of the electron as it recoils

Q5. a) What is a spectrum
b) The figure below shows a spectral line series for hydrogen atom. Identify the series marked P, Q, R
(3 marks)

c) Calculate the highest velocity, the smallest orbit radius and the time it takes for an electron to complete one revolution in a hydrogen atom. (8 marks)
d) State any four drawbacks of Bohr's model of the atom
e) Estimate the speed of electron before collision when applied accelerating voltage is $30,000 \mathrm{~V}$ and compare it with the speed of light in vacuum.
(4 marks)

END

