THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 418: ATOMIC PHYSICS

Date: APRIL 2018

Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other Two Questions

You may use the following constants

- Electronic charge, $e = 106 \times 10^{-19} C$
- Mass of Electron $m_e = 9.11 \times 10^{-31} \text{ kg}$
- Permittivity of Vacuum $\varepsilon_o = 8.85 \times 10^{-12}$ Fm
- Permeability of vacuum $\mu_o = 4\pi \times 10^{-7} \text{Hm}^{-1}$
- Planck's constant $h = 6.63 \times 10^{-34}$ Js
- Rydberg's constant $R = 0.011 nm^{-1}$
- Speed of light in a vacuum c =3.0 x 10⁸ m/s

Q1.	a) b) c)	State the constituents of an atom List any three Bohr's postulates Differentiate between Stark's effect and Zeeman's effect	(3 marks) (3 marks) (2 marks)
	d)	i) Briefly describe Rutherford's atomic model	(3 marks)
		 Calculate the energy emitted by a photon of waveleng m. 	gth 5.2 x 10 ⁻¹¹ (3 marks)
	e)	Calculate the wavelength of light emitted when the electron in a atom falls from the first excited state to the ground state level.	hydrogen (4 marks)
	f)	i) What are X-rays?ii) Differentiate between hard and soft X-rays	(1 mark) (2 marks)

Cuea/ACD/EXM/JANUARY – APRIL 2018 /PHYSICS

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

	ii	ii) The frequency of X-rays is given as 4 x 10 ¹⁷ . Determine possessed by the X-rays	the energy (3 marks)
	• •) What is Compton scattering i) Describe the terms in the Compton scattering equation belo $\lambda_2 - \lambda_1 = \frac{h}{mc}(1 - cos\theta)$	(1 mark) w (4 marks)
Q2.	a)	Using a well labeled diagram of an X-Ray tube, describe hop produced	w X-rays are (6 marks)
		Dnly 0.2% of the energy of an electron is transferred to X-Rays est of the energy go? Explain your answer	. Where do the (3 marks)
	,	What is the effect of increasing the accelerating voltage on the produced	X-Ray (2 marks)
	d) <i>A</i>	A potential difference of 40kV is applied across an x-ray tube . i) Energy of electrons as they arrive at the target ii) Velocity of electron at the target	calculate: (3 marks) (4 marks)
	e) S	State any two uses of X-rays	(2 marks)
Q3.		Describe Rutherford 's alpha scattering experiment hence the atomic model	Rutherford's (7 marks)
	b)	List the four Bohr's postulates	(4 marks)
	c)	Show that the Bohr radius is given by $r_1 = \frac{\hbar^2}{ke^2m}$	(7 marks)
	d)	Differentiate between absorption and emission spectra	(2 marks)
Q4.	a)	What is Compton scattering	(2 marks)
	b)	With the aid of a well labeled diagram derive the Compton sca formula $\lambda_2 - \lambda_1 = \frac{h}{mc}(1 - cos\theta)$	attering (10 marks)
	c)	An x-ray photon with a wavelength of 9.73×10^{-2} nm scatters	off a free
		 electron at an angle of 30^{0.} Determine i) the change in wavelength for the photon ii) the wavelength of the scattered photon iii) the kinetic energy of the electron as it recoils 	(3 marks) (2 marks) (3 marks)

ISO 9001:2008 Certified by the Kenya Bureau of Standards

Page 2

Q5. a) What is a spectrum

b) The figure below shows a spectral line series for hydrogen atom. Identify the series marked P,Q,R (3 marks)

- c) Calculate the highest velocity, the smallest orbit radius and the time it takes for an electron to complete one revolution in a hydrogen atom. (8 marks)
- d) State any four drawbacks of Bohr's model of the atom (4 marks)
- e) Estimate the speed of electron before collision when applied accelerating voltage is 30,000 V and compare it with the speed of light in vacuum.
 (4 marks)

END

Cuea/ACD/EXM/JANUARY – APRIL 2018 /PHYSICS

ISO 9001:2008 Certified by the Kenya Bureau of Standards