THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

JANUARY - APRIL 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 406: NUCLEAR PHYSICS

Date: APRIL 2018 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other Two Questions

Physical Constants

1 atomic mass unit = 931.5 MeV

Spin g – factor for proton, $g_s = 5.59$

Spin g – factor for neutron, $g_s = -3.83$

orbital g – factor for proton, $g_l = 1$

orbita g – factor for neutron, $g_1 = 0$

Q1 a) Distinguish between the following terms:

(i)	Nuclear decay and Nuclear reaction	(2 marks)
(ii)	Endoergic and exoergic reactions	(2 marks)
(iii)	Pick up and stripping reaction	(2 marks)
(iv)	Impact parameter and scattering angle	(2 marks)

- b) From the nuclear reaction X(a, b)Y, express the reaction Q- value in terms of
 - (i) the rest mass (2 marks)
 - (ii) excess kinetic energy (2 marks)
- c) (i) Define the term degeneracy (1 mark)
 - (ii) Determine the degeneracy for the level l = 4 (3 marks)
 - (iii) If the spin orbit potential is included in d(ii) above, determine
 - I) The possible values of the total angular momentum

(3 marks)

			II)	The degenerac	y for each	level		(3 marks)
	d)	State the significance of the following terms in the semi empirical mass formula						
		(i) (ii) (iii)	Coulo Symn	mb term netry term ce energy				(1 mark) (1 mark) (1 mark)
	e)	Determine the nuclear magnetic moment for $^{13}_{7}N$ nucleus					(5 marks)	
Q2	a)	(i) (ii) (iii)	State	is a nuclear mootwo characterist four reasons for	tics of a suc		el	(1 mark) (2 marks) (4 marks)
	b)	List six of the nuclear properties that the liquid drop model does not address. (6 mark					oes not (6 marks)	
	c)	Consider a circular loop carrying current and enclosing an area, A. Derive an expression for the magnitude of magnetic moment μ in terms of orbita angular momentum quantum number (7 marks)						erms of orbital
Q3	a)	(i)	State	the first ten she	ll model ord	lering of the n	iuclear l	evels (3 marks)
		(ii)	What	is responsible fo	or the splitti	ng between 1	$P_{3/2}$ and	
	b)	Determine the ground state, spin – parity the shell model would predict for the following						
		41010	(i) (ii) (iii)	¹³ ₅ B ¹³ ₆ C ¹³ ₇ N				(3 marks) (3 marks) (3 marks)
	c)	Consider the nuclear reaction $^{152}_{63}E_U$ (n,p) X . Given that the masses of p = 0.000549 u, n = 1.008665 u, $^{152}_{63}E_U$ = 151.921749 u and X = 151.919756 identify X and hence determine the Q- value of the reaction above (7 marks)						
Q4	a)	Derive an expression for the average value of the spin – orbit interaction and hence show that the energy splitting En is given as						
				(l	$+\frac{1}{2}\hbar$			(10 marks)
	b)	Show	that th	e reaction cross		$\sigma \text{ can be exp}$ $\sigma = \frac{R_b}{I_a N}$	ressed	as

Where Rb, Ia and N have their usual meaning

(10 marks)

- Q5 a) Derive an expression for the transmission of a beam intensity through a material of thickness x in terms of the linear attenuation coefficient μ (5 marks)
 - b) The radioisotope 24 Na emits γ rays of energies 1.378 MeV and 2,754 MeV in succession, after passing through 27.5 g/cm² of lead (ρ = 11g/cm³). Calculate their relative intensities given that the linear absorption coefficients are 48 and 62 respectively for the compounds (5 marks)
 - c) Sketch a graph of the relationship between the voltages applied to a gas filled counter and the charge collected indicating all the gas amplification region. (10 marks)

END