

Physical Constants

1 atomic mass unit = 931.5 MeV
Spin g - factor for proton, $\mathrm{g}_{\mathrm{s}}=5.59$
Sping - factor for neutron, $g_{s}=-3.83$
orbital g - factor for proton, $\mathrm{g}_{\mathrm{I}}=1$
orbita g - factor for neutron, $\mathrm{g}_{\mathrm{I}}=0$
Q1 a) Distinguish between the following terms:
(i) Nuclear decay and Nuclear reaction
(2 marks)
(ii) Endoergic and exoergic reactions
(2 marks)
(iii) Pick up and stripping reaction
(2 marks)
(iv) Impact parameter and scattering angle
b) From the nuclear reaction $X(a, b) Y$, express the reaction Q - value in terms of
(i) the rest mass
(2 marks)
(ii) excess kinetic energy
(2 marks)
c) (i) Define the term degeneracy
(1 mark)
(ii) Determine the degeneracy for the level $I=4$
(3 marks)
(iii) If the spin orbit potential is included in d(ii) above, determine I) The possible values of the total angular momentum
(3 marks)
d) State the significance of the following terms in the semi empirical mass formula

(i)	Coulomb term	(1 mark)
(ii)	Symmetry term	$(1 \mathrm{mark})$
(iii)	Surface energy	$(1 \mathrm{mark})$

e) Determine the nuclear magnetic moment for ${ }_{7}^{13} \mathrm{~N}$ nucleus
a) (i) What is a nuclear model?
(ii) State two characteristics of a successful model
(iii) State four reasons for using nuclear models
(1 mark)
(2 marks)
(4 marks)
b) List six of the nuclear properties that the liquid drop model does not address.
c) Consider a circular loop carrying current and enclosing an area, A. Derive an expression for the magnitude of magnetic moment μ in terms of orbital angular momentum quantum number
a) (i) State the first ten shell model ordering of the nuclear levels
(ii) What is responsible for the splitting between $\mathrm{P}_{3 / 2}$ and $\mathrm{P}_{1 / 2}$?
b) Determine the ground state, spin - parity the shell model would predict for the following
(i) $\quad{ }_{5}^{13} \mathrm{~B}$
(3 marks)
(ii) ${ }_{6}^{13} \mathrm{C}$
(3 marks)
(iii) ${ }_{7}^{13} \mathrm{~N}$
(3 marks)
c) Consider the nuclear reaction ${ }_{63}^{152} E_{U}(n, p) X$. Given that the masses of $\mathrm{p}=$ $0.000549 \mathrm{u}, \mathrm{n}=1.008665 \mathrm{u},{ }_{63}^{152} E_{U}=151.921749 \mathrm{u}$ and $\mathrm{X}=151.919756 \mathrm{u}$ identify X and hence determine the Q - value of the reaction above

Q4 a) Derive an expression for the average value of the spin - orbit interaction and hence show that the energy splitting En is given as

$$
\begin{equation*}
\left(l+\frac{1}{2}\right) \hbar \tag{10marks}
\end{equation*}
$$

b) Show that the reaction cross - reaction σ can be expressed as

$$
\sigma=\frac{\mathrm{R}_{\mathrm{b}}}{\mathrm{I}_{\mathrm{a}} \mathrm{~N}}
$$

Q5 a) Derive an expression for the transmission of a beam intensity through a material of thickness x in terms of the linear attenuation coefficient μ
b) The radioisotope 24 Na emits γ rays of energies 1.378 MeV and 2,754 MeV in succession, after passing through $27.5 \mathrm{~g} / \mathrm{cm}^{2}$ of lead ($\rho=$ $11 \mathrm{~g} / \mathrm{cm}^{3}$). Calculate their relative intensities given that the linear absorption coefficients are 48 and 62 respectively for the compounds
(5 marks)
c) Sketch a graph of the relationship between the voltages applied to a gas filled counter and the charge collected indicating all the gas amplification region.
(10 marks)
END

