A. M. E. C. E. A

MAIN EXAMINATION
MAY - JULY 2018 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
PART TIME PROGRAMME

MAT 335: METHODS I

Date: JULY 2018

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Show that $\mathrm{L}\left\{e^{-k t}\right\}=\frac{1}{s+k} \quad s>k$
(3marks)
b) Find the Laplace Transform of a piecewise continuous function

$$
g(t)=\left\{\begin{array}{cc}
2 t & 0 \leq x \leq 3 \tag{5marks}\\
-1 & \\
t>3
\end{array}\right)
$$

c) Determine the singular points and their nature for the following differential equation
$2 x^{2} \frac{d^{2} y}{d x^{2}}+7(x+1) \frac{d y}{d x}-3 y=0$
d) Prove that $\Gamma(n+1)=n\lceil n$
(4marks)
e) Using the definition of the Beta function evaluate

$$
\begin{equation*}
\int_{0}^{1}\left(1-x^{3}\right)^{-1 / 2} d x=\frac{1}{3} \beta\left(\frac{1}{3}, \frac{1}{2}\right) \tag{4marks}
\end{equation*}
$$

f) Solve the following differential equation using power series
$\frac{d^{2} y}{d x^{2}}+x^{2} y=0$
g) Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Q2. a) Prove that $\int_{0}^{\frac{\pi}{2}} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{\Gamma\left(\frac{p+1}{2}\right) r\left(\frac{q+1}{2}\right)}{2 r\left(\frac{p+q+2}{2}\right)}$
(6marks)
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{\frac{8}{3}} \theta \sec ^{\frac{1}{2}} \theta \mathrm{~d} \theta$
c) Show that the functions $f_{1}(x)=1 \operatorname{and} f_{2}(x)=x$ are orthogonal on set (-1 , 1) and determine the constants A and B so that the function $f_{3}(x)=1+$ $A x+B x^{2}$ is orthogonal to $f_{1}(x)$ and $f_{2}(x)$ on the interval ($-1,1$) (8marks)

Q3. a) Find the inverse Laplace Transform of $\frac{2 s^{2}-4}{(s+1)(s-2)(s-3)}$
(8marks)
b) Solve the Bessel's differential equation

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y=0 \tag{12marks}
\end{equation*}
$$

Q4. a) (b) Solve the initial value problem using the Laplace Transform

$$
\begin{equation*}
y^{\prime \prime}+2 y^{\prime}+5 y=10 y(0)=1 \text { and } y^{\prime}=0 \tag{8marks}
\end{equation*}
$$

b) Find the Fourier series of the function $f(x)=x \sin x$ in the interval $(-\pi, \pi)$. Hence deduce that $\frac{\pi}{4}=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{3.5}$
(12marks)

Q5. a) Using the definition of the Gamma function, evaluate $I=\int_{0}^{\infty} \sqrt[4]{X} e^{-\sqrt{x}} d x$
b) The vibration of a vibrating string is governed by the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} \tag{6marks}
\end{equation*}
$$

The length of the string is π and the ends are fixed. The initial velocity is zero and initial deflection is $u(x, 0)=2[\sin x+\sin 3 x]$. Find the deflection $u(x, t)$ of the vibrating string for $t>0$

