THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

PART TIME PROGRAMME

MAT 335: METHODS I

Date: JULY 2018Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1.	a)	Show that L $\{e^{-kt}\} = \frac{1}{s+k}$ $s > k$	(3marks)
	b)	Find the Laplace Transform of a piecewise continuous funct $g(t) = \begin{cases} 2t & 0 \le x \le 3 \\ -1 & t > 3 \end{cases}$	ion (5marks)
	C)	Determine the singular points and their nature for the followi equation	ng differential
		$2x^2 \frac{d^2 y}{dx^2} + 7(x+1)\frac{dy}{dx} - 3y = 0$	(5marks)
	d)	Prove that $\Gamma(n+1) = n\Gamma n$	(4marks)
	e)	Using the definition of the Beta function evaluate $\int_0^1 (1-x^3)^{-1/2} dx = \frac{1}{3}\beta\left(\frac{1}{3}, \frac{1}{2}\right)$	(4marks)
d ²	f)	Solve the following differential equation using power series	
	$\frac{y}{x^2} + x^2$		(4marks)
	g)	Show that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$	(5marks)
Q2.	a)	Prove that $\int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta d\theta = \frac{\Gamma(\frac{p+1}{2})\Gamma(\frac{q+1}{2})}{2\Gamma(\frac{p+q+2}{2})}$	(6marks)

Cuea/ACD/EXM/MAY – JULY 2018 / MATHEMATICS AND ACTUARIAL SCIENCE

ISO 9001:2008 Certified by the Kenya Bureau of Standards

b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin^{\frac{8}{3}} \theta \sec^{\frac{1}{2}} \theta d\theta$

(6marks)

c) Show that the functions $f_1(x) = 1$ and $f_2(x) = x$ are orthogonal on set (-1, 1) and determine the constants A and B so that the function $f_3(x) = 1 + Ax + Bx^2$ is orthogonal to $f_1(x)$ and $f_2(x)$ on the interval (-1, 1) (8marks)

Q3. a) Find the inverse Laplace Transform of
$$\frac{2s^2-4}{(s+1)(s-2)(s-3)}$$
 (8marks)
b) Solve the Bessel's differential equation
 $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$ (12marks)

- Q4. a) (b) Solve the initial value problem using the Laplace Transform y'' + 2y' + 5y = 10 y(0) = 1 and y' = 0 (8marks)
 - b) Find the Fourier series of the function $f(x) = x \sin x$ in the interval $(-\pi, \pi)$. Hence deduce that $\frac{\pi}{4} = \frac{1}{1.2} + \frac{1}{1.3} + \frac{1}{3.5}$ (12marks)
- Q5. a) Using the definition of the Gamma function, evaluate $I = \int_0^\infty \sqrt[4]{X} e^{-\sqrt{x}} dx$ (6marks)
 - b) The vibration of a vibrating string is governed by the equation

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$

The length of the string is π and the ends are fixed. The initial velocity is zero and initial deflection is $u(x, 0) = 2[\sin x + \sin 3x]$. Find the deflection u(x, t) of the vibrating string for t > 0 (14marks)

END