A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY - JULY 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
 PART TIME PROGRAMME

MAT 233: ORDINARY DIFFERENTIAL EQUATIONS I

Date: JULY 2018

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1.
a) Define a differential equation
b) State the order and degree of the following differential equation

$$
\begin{equation*}
K^{3}\left[\frac{d^{2} y}{d x^{2}}\right]^{4}=\left[1-\left(\frac{d y}{d x}\right)^{3}\right]^{3} \tag{2marks}
\end{equation*}
$$

c) Check for exactness and solve the differential equation $y \sin x d x-(1+y+\cos x) d y=0$
d) Solve the Bernoulli differential equation

$$
\begin{equation*}
\frac{d y}{d x}+y=x y^{3} \tag{8marks}
\end{equation*}
$$

e) Solve the differential equation

$$
\begin{equation*}
y^{\prime \prime}-10 y^{\prime}+25 y=0 \tag{4marks}
\end{equation*}
$$

f) Solve the homogeneous equation $\frac{d y}{d x}=\frac{x-y}{x+y}$

Q2. a) Using the method of separation of variables, solve the initial value problem $x \sin y d x+\left(x^{2}+1\right) \cos y d y=0$ given that $y(1)=\frac{\pi}{2}$
b) Solve the linear differential equation $(x+1) \frac{d y}{d x}+y=e^{3 x}(x+1)^{2}$
(10 marks)

Q3. a) Solve the following non-homogeneous differential equation
$\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=2 \sin 4 x$
(10 marks)
b) Solve the following differential equation

$$
y^{(4)}-4 y^{\prime \prime \prime}-5 y^{\prime \prime}+36 y^{\prime}-36 y=0
$$

(10 marks)

Q4. a) Use the method of variation of parameters to solve the differential equation

$$
\begin{equation*}
y^{\prime \prime \prime}+y^{\prime}=\tan x-\frac{\pi}{2}<x<\frac{\pi}{2} \tag{12marks}
\end{equation*}
$$

b) A body is originally at $80^{\circ} c$. it cools down to $60^{\circ} c$ in 20 minutes. The surrounding temperature is $40^{\circ} c$.what will be the temperature of the body after 40 minutes from the origin?
(8marks)
Q5. A lake has various streams flowing into it and flowing out of it, the total rates of influx and efflux being equal. For a long time, the streams flowing into the lake are polluted, and pollution in the lake built up to an undesirable level. However, as a result of conservation efforts, the sources of pollution in the streams were eliminated and now only pure water flows into the lake. If the volume of the lake is $\mathrm{V} \mathrm{km}^{3}$, if the rate of influx and efflux is $R \mathrm{~km}^{3}$ /year and if the pollutants are always uniformly distributed throughout the lake,
a) Obtain the formula for the time it will take for the pollution in the lake to be reduced:
i) To one-half its level at the time of the clean-up and
ii) To one-tenth its level at the time of clean up
(15 marks)
b) Determine the numerical time values for theLake Erie and Lake Ontario given the following data.
(5marks)

	$V\left(\mathrm{~km}^{3}\right)$	R out $\left(\mathrm{km}^{3} /\right.$ year $)$	At $\mathrm{A}=\frac{1}{2}$	At $A=\frac{1}{10}$
Lake Erie	460	175	$?$	$?$
Lake Ontario	1600	209	$?$	$?$

END

