THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

PART TIME PROGRAMME

MAT 233: ORDINARY DIFFERENTIAL EQUATIONS I

Date: JULY 2018	Duration: 2 Hours
INSTRUCTIONS: Answer	Question ONE and any other TWO Questions

Q1.	a)	Define a differential equation	(2 marks)	
	b)	State the order and degree of the following differential equation $K^{3} \left[\frac{d^{2} y}{dx^{2}} \right]^{4} = \left[1 - \left(\frac{dy}{dx} \right)^{3} \right]^{3}$	(2 marks)	
	c)	Check for exactness and solve the differential equation ysinxdx - (1 + y + cosx)dy = 0	(6marks)	
	d)	Solve the Bernoulli differential equation $\frac{dy}{dx} + y = xy^{3}$	(8marks)	
	e)	Solve the differential equation $y'' - 10y' + 25y = 0$	(4marks)	
	f)	Solve the homogeneous equation $\frac{dy}{dx} = \frac{x-y}{x+y}$	(8marks)	
Q2.	a)	Using the method of separation of variables, solve the initial $xsinydx + (x^2 + 1)cosydy = 0$ given that $y(1) = \frac{\pi}{2}$	(10 marks)	
	b)	Solve the linear differential equation $(x + 1)\frac{dy}{dx} + y = e^{3x}(x + y)$	+ 1) ² (10 marks)	
Cue2/ACD/FXM/MAY - IULY 2018 / MATHEMATICS AND ACTUARIAL SCIENCE Page 1				

Cuea/ACD/EXM/MAY – JULY 2018 / MATHEMATICS AND ACTUARIAL SCIENCE

Q3. a) Solve the following non-homogeneous differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2sin4x$ (10 marks)

b) Solve the following differential equation

$$y^{(4)} - 4y^{''} - 5y^{'} + 36y^{'} - 36y = 0$$
 (10 marks)

Q4. a) Use the method of variation of parameters to solve the differential equation

$$y''' + y' = \tan x - \frac{\pi}{2} < x < \frac{\pi}{2}$$
 (12 marks)

- b) A body is originally at $80^{\circ}c$. it cools down to $60^{\circ}c$ in 20 minutes. The surrounding temperature is $40^{\circ}c$.what will be the temperature of the body after 40 minutes from the origin? **(8marks)**
- Q5. A lake has various streams flowing into it and flowing out of it, the total rates of influx and efflux being equal. For a long time, the streams flowing into the lake are polluted, and pollution in the lake built up to an undesirable level. However, as a result of conservation efforts, the sources of pollution in the streams were eliminated and now only pure water flows into the lake. If the volume of the lake is Vkm^3 , if the rate of influx and efflux is $\frac{R km^3}{year}$ and if the pollutants are always uniformly distributed throughout the lake,
 - a) Obtain the formula for the time it will take for the pollution in the lake to be reduced:
 - i) To one-half its level at the time of the clean-up and
 - ii) To one-tenth its level at the time of clean up (15 marks)
 - b) Determine the numerical time values for theLake Erie and Lake Ontario given the following data. (5marks)

	<i>V</i> (<i>km</i> ³)	R out (^{km³} / _{year})	At $A = \frac{1}{2}$	At $A = \frac{1}{10}$
Lake Erie	460	175	?	?
Lake Ontario	1600	209	?	?

END