A. M. E. C. E. A

MAIN EXAMINATION
MAY - JULY 2018 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
REGULAR PROGRAMME

MAT 111: DISCRETE MATHEMATICS

Date: JULY 2018
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Let \boldsymbol{p} and \boldsymbol{q} be the statements:
\boldsymbol{p} : He is rich
\boldsymbol{q} : He is generous
Write the following statements in symbols forms (in terms of \boldsymbol{p} and \boldsymbol{q});
i) 'He is poor but generous'
(2 marks)
ii) 'He is rich but not generous'
(2 marks)
iii) 'He is not generous but rich'
(2 marks)
iv) 'He is poor and not generous'
(2 marks)
b) Copy and complete the truth table below;

\mathbf{p}	\mathbf{q}	$\mathbf{p \wedge q}$	$\mathbf{p \vee q}$	$\mathbf{p} \rightarrow \mathbf{q}$
1	1			
1	0			
0	1			
0	0			

c) Show that $(\boldsymbol{p} \longrightarrow \boldsymbol{r}) \vee(\boldsymbol{q} \longrightarrow \boldsymbol{r})$ is logically equivalent to $(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$, without using a truth table.
d) Find the bitwise OR, bitwise AND, and bitwise XOR of each of these pairs of bit strings.
i) 0001110001,1001001000
(4 marks)
ii) 1111111111,0000000000
(4 marks)
Q2. a) Explain, without using a truth table, why ($\mathbf{p} \vee \mathbf{q} \mathbf{v} \mathbf{r}) \wedge(\square \mathbf{p} \mathbf{v} \square \mathbf{q} \square \mathbf{r})$ is true when at least one of \mathbf{p}, \mathbf{q}, and ris true and at least one is false, but is false when all three variables have the same truth value.
b) Let \mathbf{p} and \mathbf{q} be two prepositions. Where \mathbf{p} and \mathbf{q} represent the statements;
p : "The sun is shining".
q: "It is raining".
i) Determine the conjunction and disjunction of the propositions \mathbf{p} and \mathbf{q}.
ii) Draw the truth tables for both the conjunction and disjunction for the propositions.
(4 marks)
c) i) Given two propositions \mathbf{p} and \mathbf{q}, define a bi-conditional statement of \mathbf{p} and \mathbf{q}.
ii) Show that the bi-conditional statement $(\mathbf{p} \leftrightarrow \mathbf{q})$, of \mathbf{p} and \mathbf{q} has the same truth value as; $(\mathbf{p} \rightarrow \mathbf{q}) \wedge(\mathbf{q} \rightarrow \mathbf{p})$.
(4 marks)
Q3. a) Show that the contrapositive ($\square \mathbf{q} \rightarrow \square \mathbf{p}$), of a conditional statement ($\mathbf{p} \rightarrow$ \mathbf{q}), always has the same truth value as $\mathbf{p} \rightarrow \mathbf{q}$.
(8 marks)
b) Determine whether each of these conditional statements is true or false. State with supporting reasons;
i) "If one plus one is equal to two, then two plus two is equal to five".
(2 marks)
ii) "If one plus one is equal to three, then two plus two is equal to four".
(2 marks)
iii) "If one plus one is equal to three, then two plus two is equal to five".
(2 marks)
c) Copy and complete the table for the bit operators OR, AND, and XOR.
(6 marks)

x	y	$\mathbf{x} \bigvee \mathbf{y}$	$x \wedge y$	$x \oplus y$
0	0			
0	1			
1	0			
1	1			

Q4. a) i) What are the contrapositive, the converse and the inverse of the conditional statement "The home team wins whenever it is raining"?
(2 marks)
ii) Draw the truth tables for the contrapositive, the converse and inverse of the conditional statement in (i).
(6 marks)
b) Write each of these propositions in the form " p if and only if q " in English.
i) If it is hot outside you buy an ice cream cone and if you buy an ice cream cone it is hot outside.
(2 marks)
ii) For you to win the contest it is necessary and sufficient that you have the only winning ticket.
(2 marks)
iii) You get promoted only if you have connections and you have the connections only if you get promoted. (2 marks)
iv) If you watch television your mind will decay, and conversely.
iv) The trains runs late on exactly those days when I take it.
(2 marks)
c) The De Morgan's law states that $\sim(\boldsymbol{p} \vee \boldsymbol{q})$ is logically equivalent to $\sim \boldsymbol{p} \wedge \sim \boldsymbol{q}$. Proof the law with the aid of a truth table.

Q5. a) Construct a truth table for each of the following compound propositions;
i) $(\mathbf{p} \leftrightarrow \mathbf{q}) \oplus(\square \mathbf{p} \leftrightarrow \mathbf{q})$
(4 marks)
ii) $(\mathbf{p} \leftrightarrow \mathbf{q}) \oplus(\square \mathbf{p} \leftrightarrow \square \mathbf{r})$
(4 marks)
b) Let \mathbf{p} and \mathbf{q} be two propositions. Define the following terms and hence draw a truth table for each of them.
i) Conjunction of p and q.
(4 marks)
ii) Disjunction of p and q.
(4 marks)
iii) Implication of p and q.
(4 marks)
END

