THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA **Telephone: 891601-6** Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 307: PHYSICAL ELECTRONICS

Date: APRIL 2018 **Duration: 2 Hours INSTRUCTIONS:** Answer Question ONE and any other Two Questions

You may use the following list of constants

- 6.63 x 10⁻³⁴ J.s • Planks constant (h) 1.602 x 10⁻¹⁹ C • Electronic charge • Germanium electron mobility 3600 cm²V⁻¹s⁻¹ (μ_n)
- Intrinsic carrier concentration of germanium(ni) 2.5 x10¹³ cm⁻³ 2.0
- Ratio $(\mu_n/(\mu_p))$ for germanium at 300K
- Speed of light in a vacuum
- $\circ \mu_n$ for silicon
- $\circ \mu_n$ for silicon

- 2.99792 x 10⁸ m/s 0.135m³/v-s
 - 0.048m³/v-s
- Q1. Distinguish between intrinsic and extrinsic semiconductors (2 marks) a)
 - b) Using sketches of energy band diagrams distinguish between direct and indirect transition in semiconductors citing examples in each case.(4 marks)
 - c) Describe the "cut-in" voltage of a semiconductor p-n junction diode

(2 marks)

d) Determine the miller indices of a plane intercepting the x-axis, y-axis and zaxis at $1,\frac{1}{2}$ and 1 respectively (3 marks)

Cuea/ACD/EXM/JANUARY - APRIL 2018 / PHYSICS

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- e) Distinguish between the valence band and conduction band in semiconductors clearly explaining the concept of band gap in semiconductors (4 marks)
- f) Using energy band diagrams clearly differentiate between metals semiconductors and insulators in terms of their electrical behavior. (4 marks)
- g) Define the following terms
 - i) Doping
 - ii) Drift current
 - iii) Diffusion current
 - iv) Mobility

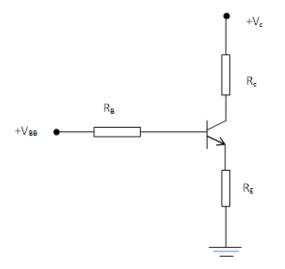
(4 marks)

- h) Differentiate between elemental and compound semiconductors giving examples in each case (4 marks)
- i) Determine the germanium P-N junction diode current for the forward bias voltage of 0.25 V at room temperature of 26^oC with reverse saturation current equal to 2 mA. Take η=2. (4 marks)
- Q2. a) A germanium semiconductor at 300k is doped with donor impurity at a rate of 10⁶ germanium atoms for every donor atom. Calculate the resistivity of the resulting semiconductor device. Assume there are 4.2 x 10²² germanium atoms per cubic centimeter. (6 marks)
 - b) Movement of charge carriers a cross a P-N junction determines the total current passing through the junction. State and explain any two processes through which charge carriers move across the P-N junction. What are the factors that affect their movement?. (5 marks)
 - c) Draw the current voltage (I-V) characteristics of a p-n junction diode, state the equation relating the total current through the junction and the applied voltage.
 (3 marks)
 - d) Given that the drift current density is

$$J_{drift} = e(\mu_p p + \mu_n n)E$$

Show that the resistivity of an n-type material is given as $\rho = \frac{1}{e\mu_n n}$ (6 marks)

- Q3. a) Briefly explain the following terms i) Active region in C-B configuration (2 marks) ii) Saturation region in C-E configuration (2 marks)
 - b) Draw a circuit for n-p-n transistor in the common emitter(C-E) configuration for an active mode operation and derive an expression for the collector current.
 (5 marks)


Cuea/ACD/EXM/JANUARY – APRIL 2018 /PHYSICS

ISO 9001:2008 Certified by the Kenya Bureau of Standards

Page 2

c) Using a circuit diagram explain any bipolar junction transistor (BJT) model. (4 marks)

- d) The collector current in common base configuration is 6 mA, given that the base current is $150 \ \mu A$. Determine the emitter current. (3 marks)
- e) The figure bellow shows a transistor in common emitter configuration.

Given that the transistor has the following parameters; $h_{FE} = 50$, $V_{cc} = 25V$, $V_{BB} = 10$, $R_B = 40K\Omega$, $R_c = 15 \ K\Omega$ and $R_E = 5 \ K\Omega$. Assuming that the transistor is in saturation, find; I_B and I_c . (4 marks)

Q4.	a)	Using a well labelled diagram, briefly describe the operation field effect transistor (JFET)	of a junction (4 marks)
	b)	Outline the two categories of JFET	(2 marks)
	c)	Define the following terms as used in JFET i) Pinch voltage ii) Transconductance iii) Channel iv) Ipss	(4 marks)
	d)	Differentiate between a JFET and a MOSFET	(2 marks)
	e)	Explain why N-channel MOSFETs are more popular than P-cha	annel (2 marks)
	f)	With the aid of a diagram the depletion mode of JFETs	(3 marks)
	g)	The data sheet of a certain JFET indicate that $I_{DSS} = 4$ mA and determine the drain current for $V_{GS} = -2V$.	V _p = -6 V. (3 marks)

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- Q5. a) What is a p-n junction diode (1 mark)
 b) Explain the possible biasing of a junction diode in a circuit (2 marks)
 c) Silicon diode has a saturation current of 0.01 μA at room temperature of 300K. Find the saturation current at 400K. (5 marks)
 - d) A transistor has β=180. Calculate the approximate collector and base currents, if the emitter current is 12 mA.
 (3 marks)
 - e) Determine the germanium P-N junction diode current for the forward bias voltage of 0.25V at a temperature of 500K with reverse saturation current of 1 mA.
 (3 marks)
 - f) With the aid of a diagram explain forward and reverse biasing of a p-n junction (4 marks)
 - g) Describe how a space charge region is formed in a p-n junction. (2 marks)

END

Cuea/ACD/EXM/JANUARY – APRIL 2018 /PHYSICS

Page 4

ISO 9001:2008 Certified by the Kenya Bureau of Standards