A. M. E. C. E. A
MAIN EXAMINATION

JANUARY - APRIL 2018 TRIMESTER
FACULTY OF SCIENCE
P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
PART TIME PROGRAMME

MAT 437: NUMERICAL ANALYSIS II

Date: APRIL 2018
Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Solve $\left.\begin{array}{l}2 x+4 y=10 \\ x-y=2\end{array}\right\}$ using Gaussian elimination method.
b) Explain briefly Crout's method For solving system of linear equations.
(3 marks)
c) Find the least square polynomial of the form $y=a_{0}+a_{1} x+a_{2} x^{2}$ that best fit the data below

\underline{x}	$\underline{-2}$	$\underline{-1}$	$\underline{0}$	$\underline{1}$	$\underline{2}$
y	0	-4	-4	0	8

(6 marks)
d) Obtain a linear relation from $y=\frac{a x}{b+x}$ where a and b are constants. (5 marks)
e) Find exact solution of $\frac{d y}{d x}=x+y ; y(0)=1$ at $\mathrm{x}=0.2$.
(5 marks)
f) Linearize the relation $y=a x^{b}$ where a and b are constants. (5 marks)

Q2. a) Find the eigenvalues and the corresponding eigenvector of matrix

$$
A=\left[\begin{array}{ccc}
4 & 2 & 1 \tag{13marks}\\
0 & -5 & 3 \\
0 & 0 & 6
\end{array}\right]
$$

b) Solve the system below using Gaussian elimination with pivoting. Perform the computation to 4 decimal places.

$$
\begin{align*}
& 5 x+3 y+z=18 \\
& 10 x+6 y+7 z=43 \tag{7marks}\\
& 20 x+y-z=19
\end{align*}
$$

Q3. a) Use Jacobi's iterative method to solve the system of equations below using $x^{(0)}=1, y^{(0)}=0, z^{(0)}=0$.

$$
\begin{align*}
& 3 x+20 y+30 z=12.3 \\
& 20 x+5 y+7 z=4.9 \tag{15marks}\\
& 5 x+20 y+4 z=7.3
\end{align*}
$$

b) Derive normal equations of least square fit of the form
(5 marks)
Q4. a) Find the Taylor series solution of the differential equation

$$
\begin{equation*}
\frac{d y}{d x}=2 \frac{y}{x} ; y(1)=2 \text { up to the term in }(x-1)^{4} . \tag{10marks}
\end{equation*}
$$

b) Given $\frac{d y}{d x}=2 x-y ; y(0)=1$ find $y(1)$ using simple Euler method with 10 steps.
(10 marks)
Q5. Given that $x=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$. Use the power method to get the dominant eigenvalue of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 5 & -8 \\
5 & -2 & 5 \\
-8 & 5 & 1
\end{array}\right] \text { to the nearest whole number and the corresponding }
$$

eigenvector with components whole numbers. Verify that $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{7}$ is also an eigenvector and state the corresponding eigenvalue.
Using the fact that eigenvectors of a symmetric matrix are mutually orthogonal find the third eigenvector and the corresponding eigenvalue.
(20 marks)

