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Q1. a)  Solve 








2

1042

yx

yx
using Gaussian elimination method.             (5 marks) 

b) Explain briefly Crout’s method For solving system of linear equations.      
             (3 marks) 
 

c) Find the least square polynomial of the form 2

210 xaxaay   that best fit 

the data below 
 

x -2 -1 0 1 2 

y 
0 -4 -4 0 8 

(6 marks) 

d) Obtain a linear relation from 
xb

ax
y


 where a and b are constants.            

              (5 marks) 

e) Find exact solution of 1)0(;  yyx
dx

dy
 at x=0.2.                     (5 marks) 

f) Linearize the relation baxy   where a and b are constants.     (5 marks) 
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Q2. a)  Find the eigenvalues and the corresponding eigenvector of matrix 
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600
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A .                                                       (13 marks) 

b)  Solve the system below using Gaussian elimination with pivoting. Perform 
the computation to 4 decimal places. 
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                                                      (7 marks) 

Q3. a)  Use Jacobi’s iterative method to solve the system of equations below 

using 0,0,1 )0()0()0(  zyx . 

3.74205

9.47520

3.1230203
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(15 marks) 

 
b)  Derive normal equations of least square fit of the form

)(........................................)()()( 332211 xfaxfaxfaxfay nn .             

            (5 marks) 

Q4. a)  Find the Taylor series solution of the differential equation   

2)1(;2  y
x

y

dx

dy
up to the term in 4)1( x .                       (10 marks) 

 

b)  Given 1)0(;2  yyx
dx

dy
 find y(1) using simple Euler method with 10 

steps.         (10 marks) 

Q5. Given that  010x . Use the power method to get the dominant eigenvalue of 

the matrix 
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A to the nearest whole number and the corresponding 

eigenvector with components whole numbers. Verify that  T101  is also an 

eigenvector and state the corresponding eigenvalue.  
Using the fact that eigenvectors of a symmetric matrix are mutually orthogonal 
find the third eigenvector and the corresponding eigenvalue.                            
                         (20 marks) 


