

Q1. a) Classify each of the following equations as ordinary or partial differential equations; state the order and degree of each equation; and determine whether the equation under consideration is linear or non-linear.
(6marks)
i. $\quad x^{2} d x+y^{2} d y=x e^{-x}$
ii. $\quad \frac{\partial^{2} u}{\partial x^{2}}+\left(\frac{\partial^{2} u}{\partial x \partial y}\right)^{2}+\frac{\partial^{2} u}{\partial y^{2}}=x^{2}+y^{2}$
iii. $\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0$
b) Find a PDE by eliminating a and c in $x^{2}+y^{2}+(z-c)^{2}=a^{2}$
(3marks)
c) Show that the complete integral of $z=p x+q y-2 p-3 q$ represents all possible planes through the points ($2,3,0$), also find the envelop of all planes represented by complete integral
(5marks)
d) State the necessary condition for integrability of an equation the form

$$
P d x+Q d y+R d z=0
$$

(1mark)
e) Solve $x_{2} x_{3} p_{1}+x_{3} x_{1} p_{2}+x_{1} x_{2} p_{3}=x_{1} x_{2} x_{3}$
(4marks)
f) Use Jacobi's method to find a complete integral of $p_{1} x_{1}+p_{2} x_{2}=p_{3}{ }^{2}$ (6 marks)
g) Find the complete integral $x(1+y) p=y(1+x) q$
(5marks)
Q2. a) Find the integral surface of the $x^{2} p+y^{2} q+z^{2}=0$ which passes through the hyperbola

$$
\begin{equation*}
x y=x+y \text {, and } z=1 \tag{5marks}
\end{equation*}
$$

b) Find the complete integral and singular integral $q^{2}=z^{2} p^{2}\left(1-p^{2}\right)$
(7 marks)
c) Find the family orthogonal to $\emptyset\left(z(x+y)^{2}\right)$., $\left.\left(x^{2}-y^{2}\right)\right)$
(8marks)
Q3.
a) Solve $p \tan x+q \tan y=\tan z$
(4marks)
b) Show that $p^{2}+q^{2}=1$ and $\left(p^{2}+q^{2}\right) x=p z$ are compatible and hence solve
(8marks)
c) Form a PDE by eliminating arbitrary functions f and g from $z=f\left(x^{2}-y\right)+$ $g\left(x^{2}+y\right)$
(4marks)
d) Find the complete integral and singular integral for $z=p x+q y+p q$
(4marks)
Q4. a) Solve the PDE $(y+z) p+(z+x) q=x+y$
(6marks)
b) Find the equation of surfaces satisfying $4 y z p+q+2 y=$

0 and passing thrugh $y^{2}+z^{2}=1$ and $x+z=2$
(6 marks)
c) Prove for integrability hence solve for $x z^{3} d x-z d y+2 y d z=0$
(8marks)
Q5. a) Solve $\left(e^{x} y+\cos x\right) d x+\left(e^{x}+e^{y} z\right) d y+e^{y} d z=0$
(5marks)
b) Find the complete integral of $p q=x^{m} y^{n} z^{2 L}$
(6marks)
c) Form a partial differential equation by eliminating the arbitrary function (f) from the equation $(x+y+z)=f\left(x^{2}+y^{2}+z^{2}\right)$
(5 marks)
d) Solve $p+3 q=\tan (y-3 x)$
(4marks)
END

