[®] THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 432: PARTIAL DIFFERENTIAL EQUATION I

Date: APRIL 2018Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Classify each of the following equations as ordinary or partial differential equations; state the order and degree of each equation; and determine whether the equation under consideration is linear or non-linear.

(6marks)

i.
$$x^2 dx + y^2 dy = xe^{-x}$$

ii. $\frac{\partial^2 u}{\partial x^2} + \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2 + \frac{\partial^2 u}{\partial y^2} = x^2 + y^2$
iii. $\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$

b) Find a PDE by eliminating a and c in $x^2 + y^2 + (z - c)^2 = a^2$ (3marks)

- c) Show that the complete integral of z = px + qy 2p 3q represents all possible planes through the points (2,3,0), also find the envelop of all planes represented by complete integral (5marks)
- d) State the necessary condition for integrability of an equation the form Pdx + Qdy + Rdz = 0 (1mark)
- e) Solve $x_2x_3p_1 + x_3x_1p_2 + x_1x_2p_3 = x_1x_2x_3$ (4marks)

Cuea/ACD/EXM/JANUARY – APRIL 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

g)	Fir	nd the complete integral $x(1+y)p = y(1+x)q$	(5marks)
Q2.	a)	Find the integral surface of the $x^2p + y^2q + z^2 = 0$ which pathe hyperbola xy = x + y, and $z = 1$	asses through (5marks)
	b)	Find the complete integral and singular integral $q^2 = z^2 p^2 (1 - z^2)^2$	p ²) (7 marks)
	c)	Find the family orthogonal to $\emptyset(z(x+y)^2)$, $(x^2 - y^2)$)	(8marks)
Q3.	a)	Solve $p \tan x + q \tan y = \tan z$	(4marks)
	b)	Show that $p^2 + q^2 = 1$ and $(p^2 + q^2)x = pz$ are compatible and	d hence solve (8marks)
	c)	Form a PDE by eliminating arbitrary functions f and g from $g(x^2 + y)$	$z = f(x^2 - y) +$ (4marks)
	d)	Find the complete integral and singular integral for $z = px + px$	- qy + pq (4marks)
Q4.	a)	Solve the PDE $(y+z)p+(z+x)q = x+y$	(6marks)
	b)	Find the equation of surfaces satisfying $4yzp + q + 2y = 0$ and passing thrugh $y^2 + z^2 = 1$ and $x + z = 2$	(6 marks)
	c)	Prove for integrability hence solve for $xz^3dx - zdy + 2ydz =$	0 (8marks)
Q5.	a)	Solve $(e^{x}y + \cos x)dx + (e^{x} + e^{y}z)dy + e^{y}dz = 0$	(5marks)
	b)	Find the complete integral of $pq = x^m y^n z^{2L}$	(6marks)
	c)	Form a partial differential equation by eliminating the arbitrary f from the equation $(x+y+z) = f(x^2 + y^2 + z^2)$	unction (f) (5 marks)
	d)	Solve $p + 3q = \tan(y - 3x)$ *END*	(4marks)

f) Use Jacobi's method to find a complete integral of $p_1x_1 + p_2x_2 = p_3^2$ (6marks)

Cuea/ACD/EXM/JANUARY – APRIL 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards