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INSTRUCTIONS:  Answer  Question ONE and any other TWO Questions 

 
Q1. a)  Define Laplace transform and give an example.                           (2 marks) 

b)  Show that ks
ks

ekt 


 ;
1

}{ .                                                        (5 marks) 

c)  Distinguish between the following 
i) Ordinary point and singular point.                               (2 marks) 
ii) Orthogonal function and orthonormal function.             (2 marks) 

 
d)  Find the first five non zero term of the Taylor series expression for the 

solution to the Initial value problem, 1)1();1(: '2"  yyxyy .                                 

                   (5 marks) 
 
e)  State at which point the following differential equations have singular points. 

i) 02'"2  yxyyx  
ii)   0621 "2  yxyyx  

iii)   0261 '"2  yxyyx      (5 marks) 

           f)  Evaluate    
2
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8
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

dxxx .                                                (5 marks) 

           g)  Explain the following terms 
i) Legendre polynomial.                                                           (1 mark) 
ii) Bessel function.                                                                    (1 mark) 
iii) Norm of a function.                                                               (1 mark) 
iv) Gamma function.                                                                  (1 mark) 
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Q2. a)  Find the Laplace transform of the piecewise continuous function  

 
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b)  Evaluate
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 .                                                                (6 marks) 

 
c)  Solve the initial value problem below using Laplace transform. 

0)0(;1)0(;1052 ''"  yyyyy .                                           (9 marks) 

 

Q3. a)  Use a power series to solve the differential equation xxxyy 22'   

about x=0. Obtain a recursion formula for the coefficients and write the 
first few terms as a power series of the solution function.           (10 marks) 

 
b)  Find a solution in power series form, centered at x=1 on the differential 

equation 0'"  xyyxy . Obtain a recursion formula and write the first few 

terms.              (10 marks) 
 

Q4. a)  Show that the functions 1)(1 xf  and xxf )(2  are orthogonal on set (-

1,1).         (2 marks) 
 

b)  Determine the constants A and B so that the function, 2

3 1)( BxAxxf 

 
is orthogonal to )(1 xf  and )(2 xf on the interval (-1,1).                 (8 marks) 

 

c)  Show that
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.                                 (10 marks) 

Q5. a)  i)  Express   

1

0

1 dxxx
pnm  in terms of the Beta function and hence 

evaluate integral  
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1035 )1( dxxx .                                     (10 marks) 

   ii)  Also show that  

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b)  Obtain the Fourier series of 
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*END* 


