[®] THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2018 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

PART TIME PROGRAMME

MAT 233: ORDINARY DIFFERENTIAL EQUATIONS I

Date: APRIL 2018Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1.	a)	Define a differential equation (2 marks)
	b)	State the order and degree of the following differential equation $K^2 \left[\frac{d^2 y}{dx^2}\right]^3 = \left[1 - \left(\frac{dy}{dx}\right)^2\right]^2$ (2 marks)
	c)	Check for exactness and solve the differential equation ysinxdx - (1 + y + cosx)dy = 0 (4marks)
	d)	Solve the Bernoulli differential equation $\frac{dy}{dx} + y = xy^3$ (8marks)
	e)	Solve the differential equation y'' - 8y' + 16y = 0 (8marks)
	f)	Solve the equation y''' + y' = 0 (6marks)
Q2.	a)	Using the method of separation of variables, solve the initial value problem $xsinydx + (x^2 + 1)cosydy = 0$ given that $y(1) = \frac{\pi}{2}$ (10 marks)
Cuea/ACD/EXM/JANUARY – APRIL 2018 / MATHEMATICS AND COMPUTER SCIENCE Page 1		

ISO 9001:2008 Certified by the Kenya Bureau of Standards

b) Solve the linear differential equation $(x + 1)\frac{dy}{dx} + y = e^{3x}$ (10 marks)

Q3. a) Solve the following non-homogeneous differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 2sin4x$ using the method of undetermined coefficient.

b) Solve the homogeneous equation
$$\frac{dy}{dx} = \frac{x-y}{x+y}$$
 (10 marks) (10 marks)

(6marks)

Q4. a) Determine if the following equations are homogeneous i). $y' = \frac{y+x}{x}$ ii). $y' = \frac{2xye^{x/y}}{x^2+y^2\sin\frac{x}{y}}$

- b) Solve the following differential equation (8marks) $y' = \frac{2+ye^{xy}}{2y-xe^{xy}}$
- c) A body is originally at $80^{\circ}c$. it cools down to $60^{\circ}c$ in 20 minutes. The surrounding temperature is $40^{\circ}c$.what will be the temperature of the body after 40 minutes from the origin? (6marks)
- Q5. a) Find the orthogonal trajectory of the family of line of slope c and passing through the point (1,5) (6marks)
 - b) The population of organisms governed by the law of simple population growth has a growth rate of 0.35 per member per week, that is $\frac{dp}{dt} = 0.35p$. How long does it take for the population to triple? **(8marks)**
 - c) Determine c_1 and c_2 so that $c_1 sin2x + c_2 cos2x + 1$ will satisfy the conditions $y\left(\frac{\pi}{8}\right) = 0$ and $y'\left(\frac{\pi}{8}\right) = \sqrt{2}$ (6marks)

END