A. M. E. C. E. A
MAIN EXAMINATION
JANUARY - APRIL 2018 TRIMESTER
\title{ FACULTY OF ARTS AND SOCIAL SCIENCES }
DEPARTMENT OF SOCIAL SCIENCES
REGULAR PROGRAMME

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

ECN 304: INTERMEDIATE MICROECONOMICS

Date: APRIL 2018 Duration: 2 Hours
 INSTRUCTIONS: Answer Question ONE and any other TWO Questions

Q1. a) Differentiate between Marshallian Cardinal utility theory from Hicksian, Slutsky's Ordinal utility theory.
b) With the use of well-labeled diagram show price change effect decomposition by both Hicks and Slutsky. Use separate diagrams for your answer.
c) Mary consumes just two goods (1 and 2). Her budget line has intercepts of 20 for q 1 and 40 for q2, and p2 = \$10.
(8 Marks)
i) What is p 1 ?
ii) What is Mary's income (m)?
iii) What will be Mary's willingness to exchange good 2 for good 1 in equilibrium (i.e., her MRS)?
d) If Mary faces a utility function of the form:
$U=f(x, y)=X^{1 / 2} Y^{1 / 2}$
Show Mary's Utility maximizing condition and calculate her $M R S_{x, y}$?
(6 Marks)
e) Must a consumer purchase a positive quantity of each commodity to be in equilibrium? Explain.
(5 Marks)
f) Use an IC-BL diagram to show how the following changes will affect a consumer's purchase of sukuma wiki.
(6 Marks)
i) An increase in the price of sukuma wiki.
ii) An increase in consumer income.
iii) New health information indicating that sukuma wiki consumption is good for you.

Q2. Distinguish a Leontief Production function from a Cobb-Douglas Production function.
a) Clearly demonstrate their different Isoquants
(5 Marks)
b) Show that the marginal rate of technical substitution are different in the two functions.
(5 Marks)
c) Given an original production function represented by the following equation:
$Q=10 K^{1 / 2} L^{1 / 2}$
(10 Marks)
Derive version of the original production function given above for the following technical progress in production:
i) Neutral Technical progress
ii) Capital - Saving Technical Progress
iii) Labour - Saving Technical Progress.

Q3. Suppose a given consumer consumes two goods; Good X (Bread) and Good Y (Chicken). Suppose further that her weekly income is $50 /-$, price of good X is $2 /-$, and price of good Y is $10 /-$. The table below gives total utilities he derives consuming different levels of each good.

Qx	TUx	QY	TUy
1	30	1	50
2	39	2	105
3	45	3	148
4	50	4	178
5	54	5	198
6	56	6	213

a) Calculate the marginal utility for each level of consumption per good
(5 Marks)
b) Calculate the marginal utility per shilling spent on each good for the different quantities.
c) What will be the consumer's utility maximizing bundle of the two goods?
(10Marks)
Q4. a) If the production function of cars by the General Motors is given by the following equation:
$Q=K^{1 / 2} L^{1 / 2}$
i) Average Product of Labour (APL)
ii) Average Product of Capital (APK)
iii) Marginal Product of Labour (MPL)
iv) Marginal Product of Capital (MPK)
b) If the Maize production function is given as below:
$Q=4 K^{1 / 2} L^{1 / 2}$
i) What is the equation of the isoquant for $\mathrm{Q}=20$?
ii) What is the marginal rate of technical substitution (MRTSL,k) between labour and capital in the production of maize? (7 Marks)
Q5. Consider a monopoly facing the inverse demand $p(y)=40-y$, and with total cost $\mathrm{TC}(\mathrm{y})=20 \mathrm{y}$.
a) Find the marginal revenue of a monopoly, $\mathrm{MR}(\mathrm{y})$ and depict it in a graph together with the demand (formula +graph). Which is bigger: price or marginal revenue? Why? (one sentence)
(6 Marks)
b) Find the optimal level of production and price (two numbers). Illustrate the optimal choice in a graph, depicting Consumer and Producer Surplus, and DWL (three numbers +graph).
(7 Marks)
c) Find equilibrium price and quantity.

