A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST - DECEMBER 2016 TRIMESTER
FACULTY OF COMMERCE
DEPARTMENT OF ACCOUNTING AND FINANCE
ODEL PROGRAMME

CMS 121: BUSINESS MATHEMATICS

Date: DECEMBER 2016

INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1. i) XYZ Company is operating in a perfectly competitive market. It has a demand curve of the form $\mathrm{Qd}_{\mathrm{D}}=20-2 \mathrm{P}$ where Qd_{D} is the quantity demand of a good and P is the price of that good. Besides, the supply curve of that Company is Qs = $-4+2 P$, where $Q s$ is the quantity supply of a good.
a) Determine the values of P and Q using simultaneous equations.
b) Draw the graph of supply and demand.
ii) The total revenue obtained (in \$000) from selling x hundred items in a particular day is given by R, which is a function of variable x .
Given that $\mathrm{dR} / \mathrm{dx}=20-4 \mathrm{x}$
a) Determine the total revenue function R
b) Find the number of items sold in one day that will maximize the total revenue and evaluate the total revenue.

Q2. The firm XYZ is under monopolistic competition in Kenya in which there is free entry and exit while the product is a bit differentiated. The demand function for the product is $\mathrm{Q}=100-0.5 \mathrm{P}$ while the total cost function is $\mathrm{C}=1562.5+5 \mathrm{Q}+$ $Q^{2}+0.05 Q^{3}$
a) Calculate the profit maximization level of output?
b) Calculate the maximum profit for XYZ?
c) Compute the super normal profit per output?

Q3. i) In a class of 120 students numbered 1 to 120 , all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects?
ii) Using practical example, discuss the advantages of linear and non-linear functions in business management.
(5 marks)
Q4. A garden shop wishes to prepare a supply of special fertilizer at a minimal cost by mixing two fertilizers, A and B. The mixture is to contain:
at least 45 units of phosphate
at least 36 units of nitrate
at least 40 units of ammonium
Fertilizer A costs the shop $\$.97$ per pound. Fertilizer B costs the shop $\$ 1.89$ per pound.
Fertilizer A contains 5 units of phosphate and 2 units of nitrate and 2 units of ammonium.
Fertilizer B contains 3 units of phosphate and 3 units of nitrate and 5 units of ammonium. How many pounds of each fertilizer should the shop use in order to minimize their cost?
(20 Marks)

END

