A. M. E. C. E. A
MAIN EXAMINATION
P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY - APRIL 2017 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

SCHOOL FOCUSED PROGRAMME

CHEM 104: CHEMICAL BONDING AND STRUCTURE

Date: APRIL 2017

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other Two Questions

Q1
a) Scientists have proposed various models of the atom to match experimental evidence available. Describe the following models.
i. Thomson's plum pudding model
ii. Rutherford's model
b)
i. In order to account for the configuration of multi - electron atoms, quantum numbers I, m and n were introduced. Explain briefly the significance of each of these quantum numbers.
ii. State clearly the values assigned to I and m when $n=3$. (3 marks)
c)
i. Derive Broglie wave equation from Einstein equation and Planck's equation.
(4 marks)
ii. Calculate the wavelength of a wave associated with a water molecule of mass $3 \times 10^{-26} \mathrm{kgs}$, moving at $500 \mathrm{~m} / \mathrm{s}\left[6.63 \times 10 \mathrm{~m}^{-34} \mathrm{Jsec}\right]$
(2 marks)
d)
i. Define an orbital.
ii. Using the XYZ plane, sketch the following the orbitals
i. $\quad P_{z}$ orbital
ii. d_{z}^{2} orbital
iii. $\quad d_{x}^{2}-y^{2}$ orbital
iv. S-orbital
(4 marks)
iii.
i. Write the electronic configuration of the following:
i. $\mathrm{Cr}=17$
ii. $\quad \mathrm{Cr}=24$
iii. $\quad \mathrm{Mo}=42$
(3 marks)
ii. Calculate the effective nuclear charge on a 3d and 4 s electron in Nickel atom [$\mathrm{Ni}=25$]
(2 marks)
Q2
a) Describe the following experiments on particulate nature of light
i. The photoelectric effect
(5 marks)
ii. Compton scattering
b)
i. State FIVE assumptions that were based on the Bohr atomic model.
(5 marks)
ii. State ONE success and THREE failures of the Bohr model. (3 marks)

Q3
a) Draw the molecular orbital energy level diagram for the following species:
i. O_{2}^{-}
ii. $\quad \mathrm{N}_{2}{ }^{+}$
iii. OF

$$
[0=8 ; N=7 ; F=9]
$$

For each species determine the bond order magnetic property and write the electronic configuration.
b)
i. What is meant by the term resonance?
ii. Draw resonance structures of the following ions.
i. $\quad \mathrm{NO}_{3}{ }^{-}$
ii. $\quad \mathrm{SO}_{4}{ }^{2-}$
$[\mathrm{N}=7 ; \mathrm{O}=8 ; \mathrm{S}=16]$
Q4
a)
i. Define lattice energy.
ii. Using the following data, calculate the lattice energy of potassium bromide using the Born Haber Cycle.

Reaction	$\mathrm{H} / \mathrm{KJ} \mathrm{mol}^{-\mathbf{1}}$
$\mathrm{K}(\mathrm{s})+1 / 2 \mathrm{Br}_{2}(\mathrm{I}) \longrightarrow \mathrm{KBr}(\mathrm{s})$	-392
$\mathrm{~K}(\mathrm{~s}) \longrightarrow \mathrm{K}^{+}(\mathrm{g})+\mathrm{e}$	+90
$\mathrm{~K}(\mathrm{~g}) \longrightarrow \mathrm{Br}(\mathrm{g})$	+420
$1 / 2 \mathrm{Br} 2(\mathrm{I}) \longrightarrow \mathrm{Br}^{-}$	+112
$\mathrm{Br}(\mathrm{g})+\mathrm{e} \longrightarrow \mathrm{KB}$	

(5 marks)
b) Describe trends across the periods and down the groups for the following properties of the periodic table.
i. Metallic character
ii. Ionisation energy
iii. Electronegativity
iv. Atomic radius
(12 marks)
c) Distinguish between electron affinity and electronegativity.
a) The hydrogen emission spectrum arises when electrons move from orbits of high quantum number to orbits of low quantum number.
(2 marks)
i. Draw an emission spectrum from $\mathrm{n}=1$ to $\mathrm{n}=\alpha$ indicate the Brackets, Paschen and Pfund series. Also indicate the ionization energy of an electron.
ii. Calculate the frequency and wavelength of light emitted by a hydrogen atom when an electron falls from orbit $\mathrm{n}=4$ to orbit $\mathrm{n}=2$ using the following equation.

$$
\frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{1^{2}}}-\frac{1}{n_{2^{2}}}\right] R H=1.098 \times 10^{-2} \mathrm{~nm}^{-1}
$$

iii. The value of the wavelength at the start of the continuum in the sodium emission spectrum is 242 nm . Calculate the $1^{\text {st }}$ ionization energy of sodium $\left[6.626 \times 10^{-34} \mathrm{Js} ; \mathrm{C}=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} ; \mathrm{L}=6.02 \times 10^{23}\right.$ mol].
iv. Draw a labeled diagram of the apparatus used to produce the visible spectrum of hydrogen.

