THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAIN EXAMINATION

JANUARY - APRIL 2017 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 102: PHYSICAL CHEMISTRY I

Date: APRIL 2017 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any other Two Questions

R = 0.08206 I atm mol⁻¹ K⁻¹ = 8.3145 Jmol⁻¹K⁻¹ 1 atm = 760mmHg 0°C = 273K

Q1.

- a) Given the reaction $N2O_{4(g)} \longrightarrow 2NO_{2(g)}$ express K_p in terms of K_c . (5 marks)
- b) the average kinetic energy of $NH_{3(g)}$ at $70^{\circ}C$ is 7.5×10^{-21} J/molecule. Calculate the mean square speed of Ne gas in m^2/s^2 at the same temperature and pressure $NH_3 = 17$, Ne = 20. (7 marks)
- c) The vapour pressure of water at 17.55mmHg at 20.0°C is 17.5 mmHg. What is the vapour pressure of water above a solution of 1.50m urea CO(NH₂)₂ at 20.0°C?

(6 marks)

u)	698K. If 0.500mol $H_{2(g)}$ and 0.500mol I_2 in a 2.0L vessel are mixed at 698K. Howard many moles of each gas will be present at equilibrium? (6 marks)		
e)	Calculate the molar mass of a compound whose vapour density at 260°C is 0.480g/1L at 103mmHg pressure. (6 marks)		
Q2.			
a)	State five basic assumptions of the kinetic theory of gasses.		(5 marks)
b)	Using the kir i) ii) iii)	netic theory of gases explain Charles law Dalton's law Boyles' law	(3 marks) (3 marks) (3 marks)
c)	A certain hydrate MgSO ₄ .xH ₂ O was heated to drive off the water of crystallization. 54.2g of the hydrate gave off a steam that exerted 24.80 atm ir 2.0L flask at 120°C. Calculate x. (Mg = 24, S = 32,) = 16, H = 1). (6 marks)		
Q3.			
a)	Given that 3 gas (in atm) i) ii)	.50 moles of NH ₃ occupy 5.20L at 47°C, calculate the pusing The ideal gas equation The vander Waals equation $a = 4.17atm L^2/mol^2, b = 0.037.L/mol$	ressure of the (4 marks) (4 marks)
b)	concentratio	y of nitrogen gas at 298K and 1 atm is 6.8 x 10 ⁻⁴ mol/L. n (in molarity) of nitrogen dissolved in water under atmo. The partial pressure of nitrogen gas in the atmosphere	ospheric
Q4.			
a)	Explain in de 2.0% NaOH	etails how you would prepare 500g of an aqueous solution by mass.	ion that is (5 marks)
b)	An aqueous solution of urea $CO(NH_2)_2$ is 30% by mass and has a density of 1.02g/ml. Calculate the following:		
	i) ii) iii)	mole fraction molarity Molality	(3 marks) (3 marks) (3 marks)
c)	Use a phase diagram to show the difference in melting point and boiling point of		

(6 marks)

Q5.

a) i) State Le Chatelier's principle.

(3 marks)

ii) Consider the following equilibrium

$$Ag^{+}_{(aq)}+Cl^{-}_{(aq)}$$
 \longrightarrow $Ag Cl_{(s)}$

Predict how the amount of solid silver chloride will change when the equilibrium is disturbed by:

- I) adding Na Cl
- II) adding Ag NO₃
- adding NH₃ which reacts with Ag⁺ to form the complex ion Ag(NH₃)₂⁺. **(6 marks)**
- b) i) Define a buffer.

(2 marks)

ii) 25.0ml of 0.200M acetic acid was reacted with 10.0ml of 0.100M NaOH. Determine the pH of the resulting solution given that

$$CH_3COOH \square CH_3COO^- + H^+ Ka = 1.8 \times 10^{-5}$$
 (9 marks)

END