A. M. E. C. E. A

MAIN EXAMINATION
AUGUST - DECEMBER 2016 TRIMESTER
FACULTY OF SCIENCE
DEPARTMENT OF CHEMISTRY
REGULAR PROGRAMME
CHEM 201: PHYSICAL CHEMISTRY II
P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

Date: DECEMBER 2016
INSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Useful Information Useful Constants

$\mathrm{R}=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}=0.08206 \mathrm{L.atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$1 \mathrm{~atm}=760 \mathrm{mmHg}=101325 \mathrm{~Pa}$ or

$$
1 \mathrm{~atm}=101325 \mathrm{~N} / \mathrm{m}^{2}
$$

Q1. a) Using the $1^{\text {st }}$ and $2^{\text {nd }}$ laws of thermodynamics, show that:

$$
\begin{equation*}
\Delta s=C v \operatorname{In} T+\operatorname{RIn} V \tag{7marks}
\end{equation*}
$$

b) One mol of an ideal gas at $25^{\circ} \mathrm{C}$ was allowed to expand isothermally and reversibly from 1050.25 KPa to 10.5025 kPa against a pressure that was gradually reduced. Calculate
(i) the work done.
(ii) $\Delta E, \Delta H$ and Q
(iii) Δs and ΔG
c) Briefly define the following terms as used in thermodynamics.
(i) state variables
(ii) extensive properties
(iii) entropy
(iv) reversible process
(8 marks)
Q2. a) Given the equation $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \Delta \mathrm{Hr}$
Show that: $\Delta H r=2 \Delta H_{f, c_{6} H_{12} O_{6}}-\left(\Delta H_{f, c_{12} H_{22} O_{11}}+\Delta H_{f, H_{2} O}\right)$
(10 marks)
b) Using a carnot cycle show that entropy is a state function.
(10 marks)
Q3. a) Briefly discuss how the change in temperature affects the spontaneity of a given reaction.
(8 marks)
b) Calculate the temperature at which it is thermodynamically possible for carbon to reduce iron (iii) oxide to iron under standard conditions by the endothermic reaction. $2 \mathrm{Fe}_{2} \mathrm{O}_{3_{(s)}}+3 \mathrm{C}_{(s)} \rightarrow 4 \mathrm{Fe}_{(s)}+3 \mathrm{CO}_{2_{(G)}}$

Component	$\Delta H_{f} / \mathrm{Kjmol}^{-1}$	$\mathbf{S} / \mathrm{Jmol}^{-1} \mathrm{k}$
$\mathrm{Fe}_{2} \mathrm{O}_{3_{(s)}}$	-824.2	89.4
$\mathrm{C}_{(s)}$	0	5.7
$\mathrm{Fe}_{(s)}$	0	27.3
$\mathrm{CO}_{2_{(G)}}$	-393.5	213.7

(8 marks)
c) Calculate the work done when 1 mol of a gas expands from $10 \mathrm{dm}^{3}$ to $15 \mathrm{dm}^{3}$ against a constant pressure of 1 atmosphere.

Q4. a) (i) Plot on the some graph the variation of absolute entropy versus temperature for H_{2} and $\mathrm{CH}_{3} \mathrm{Cl}$ in the range 0 k to 300 k . (6 marks)
(ii) Explain the variation for the graph in (i).
b) Liquid water at 373 k is in equilibrium with water vapour at 1 atm pressure if $\Delta H_{v a p}$ at 373 k is $40.60 \mathrm{kj} \mathrm{mol}^{-1}$. Calculate
(i) ΔG and ΔS
(ii) Suppose the water vapour pressure is 0.900 atm . What are the values of ΔG and ΔS for the vapourization process? (6 marks)

Q5. a) Consider the system $\mathrm{M}_{(\mathrm{g})} \rightleftharpoons \mathrm{N}_{(\mathrm{g})}$ at 25° c. Given that $G^{0}{ }_{M}=8996 \mathrm{Jmol}^{-1}$ and $G^{0}{ }_{N}=11718 \mathrm{Jmol}^{-1}$, Calculate the value of the equilibrium constant for this reaction.
b) Calculate the equilibrium pressure that results if $1.00 \mathrm{~mol} \mathrm{M}_{(\mathrm{g})}$ at 1.00 atm and $1.00 \mathrm{~mol} \mathrm{~N}_{(\mathrm{g})}$ at 1.00 atm are mixed together at $25^{\circ} \mathrm{c}$.
c) Given that $G=H-T S, E=Q+W$ and $H=E+P V$. Show that for 1 mol of an ideal gas $d G=V d p-S d T$.
END

