

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

AUGUST - DECEMBER 2016 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 201: PHYSICAL CHEMISTRY II

Date:DECEMBER 2016Duration: 2 HoursINSTRUCTIONS:Answer Question ONE and ANY OTHER TWO Questions

Useful Information Useful Constants

 $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1} = 0.08206 \text{ L.atm mol}^{-1} \text{ K}^{-1}$

1 atm = 760 mmHg = 101325 Pa or

 $1atm = 101325N/m^2$

Q1. a) Using the 1st and 2nd laws of thermodynamics, show that:

 $\Delta s = CvInT + RInV$

(7 marks)

b) One mol of an ideal gas at 25° c was allowed to expand isothermally and reversibly from 1050.25 KPa to 10.5025kPa against a pressure that was gradually reduced. Calculate (i) the work done. (3 marks) (ii) ΔE , ΔH and Q (6 marks) (iii) Δs and ΔG (6 marks)

Cuea/ACD/EXM/AUGUST - DECEMBER 2016/CHEMISTRY

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- c) Briefly define the following terms as used in thermodynamics.
 - (i) state variables
 - (ii) extensive properties
 - (iii) entropy
 - (iv) reversible process

(8 marks)

Q2. a) Given the equation
$$C_{12}H_{22}O_{11} + H_2O \rightarrow 2C_6H_{12}O_6 \Delta Hr$$

Show that:
$$\Delta Hr = 2\Delta H_{f,c_6H_12O_6} - \left(\Delta H_{f,c_12H_{22}O_{11}} + \Delta H_{f,H_2O}\right)$$

(10 marks)

- b) Using a carnot cycle show that entropy is a state function. (10 marks)
- Q3. a) Briefly discuss how the change in temperature affects the spontaneity of a given reaction. (8 marks)
 - b) Calculate the temperature at which it is thermodynamically possible for carbon to reduce iron (iii) oxide to iron under standard conditions by the endothermic reaction. $2Fe_2O_{3(s)} + 3C_{(s)} \rightarrow 4Fe_{(s)} + 3CO_{2(g)}$

Component	ΔH_f / Kjmol ⁻¹	S°/Jmol ⁻¹ k
$Fe_2O_{3_{(s)}}$	-824.2	89.4
$C_{(s)}$	0	5.7
$Fe_{(s)}$	0	27.3
$CO_{2_{(G)}}$	-393.5	213.7

(8 marks)

- c) Calculate the work done when 1 mol of a gas expands from 10dm³ to 15dm³ against a constant pressure of 1 atmosphere.
- Q4. a) (i) Plot on the some graph the variation of absolute entropy versus temperature for H_2 and CH_3Cl in the range 0k to 300k. (6 marks)
 - (ii) Explain the variation for the graph in (i). (4 marks)

Cuea/ACD/EXM/AUGUST - DECEMBER 2016/CHEMISTRY

Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- b) Liquid water at 373k is in equilibrium with water vapour at 1 atm pressure if ΔH_{vap} at 373k is 40.60kj mol⁻¹. Calculate
 - (i) ΔG and ΔS
 - (ii) Suppose the water vapour pressure is 0.900 atm. What are the values of ΔG and ΔS for the vapourization process? (6 marks)
- Q5. a) Consider the system $M_{(g)} \longrightarrow N_{(g)}$ at 25^oc. Given that

 $G^{0}{}_{M} = 8996 Jmol^{-1}$ and $G^{0}{}_{N} = 11718 Jmol^{-1}$, Calculate the value of the equilibrium constant for this reaction. (6 marks)

- b) Calculate the equilibrium pressure that results if 1.00mol $M_{(g)}$ at 1.00 atm and 1.00 mol $N_{(g)}$ at 1.00 atm are mixed together at 25^oc. (8 marks)
- c) Given that G= H-TS, E = Q + W and H = E+PV. Show that for 1 mol of an ideal gas dG = Vdp-SdT. (6 marks)

END

Cuea/ACD/EXM/AUGUST - DECEMBER 2016/CHEMISTRY

ISO 9001:2008 Certified by the Kenya Bureau of Standards