THE CATHOLIC UNIVERSITY OF EASTERN AFRICA



# A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

#### AUGUST - DECEMBER 2016 TRIMESTER

# FACULTY OF SCIENCE

## DEPARTMENT OF CHEMISTRY

### **REGULAR PROGRAMME**

## CHEM 104: CHEMICAL BONDING AND STRUCTURE

Date:DECEMBER 2016Duration: 2 HoursINSTRUCTIONS:Answer Question ONE and ANY OTHER TWO Questions

| Q1. | a) | (4 marks)                                                                                           |                                  |
|-----|----|-----------------------------------------------------------------------------------------------------|----------------------------------|
|     | b) | Explain the assumption of Dalton Atomic theory                                                      | (6 marks)                        |
|     | c) | State the law of conservation of mass                                                               | (2 marks)                        |
|     | d) | Write and label the equation that relates to the speed, wave frequency of electromagnetic radiation | length and<br>(2 marks)          |
|     | e) | Explain the importance of quantum number in relation to the atomic obitals and of their electrons   | property of<br>(6 marks)         |
|     | f) | State and explain the three rules governing the electron con                                        | figurations                      |
|     |    |                                                                                                     | (6 marks)                        |
|     | g) | Write both the complete and shorthand electron configuration (fe-atomic number 26)                  | ons for iron<br><b>(4 marks)</b> |
| Q2. | a) | Give five examples of electromagnetic radiation                                                     | ( 5 marks)                       |
|     | b) | Explain the Bohr model of hydrogen atom                                                             | ( 5 marks)                       |
|     |    |                                                                                                     |                                  |

#### Cuea/ACD/EXM/AUGUST - DECEMBER 2016/CHEMISTRY

#### ISO 9001:2008 Certified by the Kenya Bureau of Standards

| c) Explain the change in atomic radius. |  |
|-----------------------------------------|--|
|-----------------------------------------|--|

|     |    | i) Along the period            |                                       | (2 marks)                        |
|-----|----|--------------------------------|---------------------------------------|----------------------------------|
|     |    | ii) Down the group in s        | s-block elements                      | (2 marks)                        |
|     | d) | Alkali metals are good red     | ucing agents. Explain                 | (2 marks)                        |
|     | e) | Radius of a cation is small    | er than that of its parent atom. Ex   | plain                            |
|     |    |                                |                                       | (3 marks)                        |
| Q3. | a) | Explain why alkali metals      | used in photoelectric cells.          | ( 2 marks)                       |
|     | b) | How does the electronega base? | tivity of m in m-OH classify it to be | e an acid or<br><b>(6 marks)</b> |
|     | c) | Be (OH)2 is insoluble in wa    | ater but Ba(OH)₂ is soluble. Explai   |                                  |
|     |    |                                |                                       | (4 marks)                        |
|     | d) | Differentiate the following    | terminologies                         | (6 marks)                        |
|     |    | i) Van der walls radiu         | S                                     |                                  |
|     |    | ii) Covalent radius.           |                                       |                                  |
|     |    | iii) Ionic radius              |                                       |                                  |
|     | f) | Explain why second electr      | on affinities are negative.           | (2 marks)                        |
| Q4. | a) | Differentiate diamagnetisn     | n from paramagnetism                  | (4 marks)                        |
|     |    | (i) Explain molecular or       | bital theory                          | (6 marks)                        |
|     | b) | What are the conditions to     | be meant before forming a bond.       | (2 marks)                        |
|     | c) | Define the following           |                                       |                                  |
|     |    | i) Hydrogen bonding            |                                       |                                  |
|     |    | ii) Hybrid orbitals            |                                       |                                  |
|     |    | iii) Metallic bond             |                                       |                                  |
|     |    | iv) Polyatomic ion             |                                       | (8 marks)                        |
|     |    |                                |                                       |                                  |

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- Q5. a) i) Use the VSEPR theory to predict the molecular geometry of alumininum trichlonde (Alcl<sub>3</sub>) (4 marks)
  - ii) Use the VSEPR theory to predict the shape of carbon dioxide (CO<sub>2</sub>) and chloride ion (ClO<sub>3</sub><sup>-</sup> (6 marks)
  - b) Define
    - i) Hybridization (2 marks)
    - ii) Intermolecular forces (2 marks)
  - Why do ionic compounds have generally higher melting points and boiling points and also do not vaporize readily at room temperature as many molecular compounds
    (6 marks)

#### \*END\*

ISO 9001:2008 Certified by the Kenya Bureau of Standards