

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2016 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

CHEM 301: COORDINATION CHEMISTRY

Date: JULY 2016Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1.	a)	Give the systematic names of the following coordination compoundsi K_4 [Fe(CN) ₆]iiFe(CO) ₅ iiiPt(NH ₃) ₂ Cl ₄			
		iv $[Pt(H_2NCH_2CH_2NH_2)_2Cl_2]Cl_2$	(8 marks)		
	b)	Draw the structures of the following coordination compounds i Δ - amminechloridobis (ethylenediamine) cobalt (I) ii \wedge - bis(ethylenediamine) <i>K</i> - <i>S</i> thiocyanido) iron (III) iii Mer-triaquatriamminechromium (III) chloride	; (6 marks)		
	c)	Define the following terms i Ligand ii Coordination number iii Ambidentate ligand	(3 marks)		
	d)	State any THREE factors that determines the coordination n complex.	umber of a (3 marks)		
	e)	i What is the Jahn – Teller effect	(2 marks)		

Cuea/ACD/EXM/MAY – JULY 2016 CHEMISTRY

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- ii Calculate the crystal field stabilization energy (CFSE) for octahedral d⁷ high and low spin complexes. (3 marks)
- iii What is *trans*-effect? Show the sequence of substitution required to get cisplatin, *Cis*[Pt(NH₃)2Cl₂] and transplatin, *trans* [Pt(NH₃)2Cl₂] (5 marks)
- Q2. a) A chelate effect is an entopy factor discuss consider $[C el(NH_2CH_3]^{2+}$ with log B₄= 6.6 Vs $[Cd (en)_2]^{2+}$ log B₄ = 10.6 (5 marks)
 - b) The table below shows the stability constraints for each of the stages in the replacement of four of the aqua molecules in [$Cu (H_2O)_6$]²⁺

lon	Kn	Value (mol ⁻¹ dm ³
[Cu(NH ₃) H ₂ O) ₅] ²⁺	K 1	1.78 X 10 ⁴
[Cu(NH ₃) ₂ (H ₂ O) ₄] ²⁺	K ₂	4.07 X 10 ³
[Cu(NH ₃) ₃ (H ₂ O) ₃] ²⁺	K ₃	9.55 X 10 ²
[Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺	K4	1.74 X 10 ²

- i Write the equation for the formation of each ion from the previous one with one ammonia less, and use this to write an expression for each stability constant. (5 marks)
- ii Write an expression for the overall stability constant for the formation of the complex ion $[Cu(NH_3)_4(H_2O)_2]^{2+}$ (2 marks)
- iii Use the values in the table for K₁, K₂, K₃ and K₄ to calculate the overall stability constant. (2 marks)
- c) The magnitude of $\Delta 0$ for CrL₆ (Cr³⁺) complexes is 26310 cm⁻¹ (L = CN), 15250 cm⁻¹ (L = H₂0) AND 9,620cm⁻¹ (L = I). Explain the relative order in terms of the ligand bonding properties. (6 marks)
- Q3. a) The complex [Ni(CN)₄]²⁻ is diamagnetic while [NiCl₄]²⁻ is paramagnetic. Explain this phenomenon and predict their possible structures. **(5 marks)**
 - b) $[Cu(H_2O)_6]^{2+}$ and $[Cu(NH_3)_4]^{2+}$ both appear blue in solution because of the presence of Cu^{2+} ions. However the two solutions are not identical. How would the appearance of the two solutions differ? If you are given an

Cuea/ACD/EXM/MAY – JULY 2016 CHEMISTRY

Page 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

unlabelled sample of each, how could the two solutions be distinguished without collecting any spectra? (5 marks)

- Determine the number of moles of AgBr which will be formed by reaction C) of one mole of the following compounds with an excess of AgNO_{3(aq)}
 - i [CoBr(NH₃)₅]Br₂
 - ii [Co(en)3]Br3
 - iii [CoBr₂(NH₃)₅]Br
- d) Discuss the various techniques currently available to characterize coordination complexes and useful information obtained from each technique. (7 marks)
- Q4. State the Laporte's rule. (2 marks) a) i.
 - ii Explain why the stability of Co^{3+} complex is > than for Co^{2+} complex even if the ionic size of the central metal ion is almost same. (2 marks)
 - iii It is useful to note that the ligands producing the most splitting are those that can engage in metal to ligand back-bonding. State THREE factors that affect these splitting. (3 marks)
 - $[V(H_2O)_6]^{3+}$ has absorption bonds at $\lambda_1 = 17,000 \text{ cm}^{-1}$ and $\lambda_2 = 25,000 \text{ cm}^{-1}$ b) Using Tanabe –Sugano for d² estimate the values of Δ_0 and B for this complex. (7 marks)
 - Write the d orbital configurations and use the Tanabe Sugano diagrams to c) identify the ground electronic term of
 - Low spin [Rh(NH₃)₆]³⁺ i
 - [Ti(OH₂)₆]³⁺ ii
 - High-spin [Fe(OH₂)₆]³⁺ iii
- Q5. Draw the structures of the following complexes a)
 - μ amido m hydroxobis (tetramminecobalt) (4+) i.
 - ii μ – oxo-bis(pentamminechromium) (III)
 - Cis diaguadichloroplatinum (II) (6 marks) iii

Cuea/ACD/EXM/MAY – JULY 2016 CHEMISTRY

ISO 9001:2008 Certified by the Kenya Bureau of Standards

(6 marks)

(3 marks)

- b) Briefly explain the following reaction mechanisms
 - i Associative reaction
 - ii Dissociative reaction
 - iii Interchange mechanism

(6 marks)

c) Use a simple molecular orbital diagram to illustrate why ligands such as CO or ethylene lead to larger Δ_0 in octahedral complexes compared to simple σ -donors like NH₃ (8 marks)

END

ISO 9001:2008 Certified by the Kenya Bureau of Standards