THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

MAY – JULY 2016 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

SCHOOL FOCUSED PROGRAMME

CHEM 201: PHYSICAL CHEMISTRY II

Date: JULY 2016Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and ANY OTHER TWO Questions

Q1.	a)	Define the following terms as used in thermodynamicsiIsolated systemsiiState of a systemiiiExtensive propertyivReversible processvHeat reservoir		(10 marks)
	b)	A 0.5 mol of an ideal gas of 25 ^o C was compressed reversibly isothermally from a volume of 100 ML to 80ML. Calculate i The work done ii Heat change iii Internal energy change iv Enthalpy change v Entropy change v Gibb's free energy change		y and (2 marks) (1 mark) (1 mark) (1 mark) (2 marks) (2 marks)
	C)	$\begin{array}{c c} \text{Determine the enthalpy change for the reaction} \\ 2C_6H_{6(l)}+15O_{2(g)} & & 12CO_{2(g)}+6H_2O_{(s)} \\ \text{Component} & \Delta \text{Hf} / \text{Kj mol}^{-1} \\ CO_{2(g)} & -393.5 \\ H_2O_{(c)} & -285.8 \\ C_6H_{6(l)} & 48.6 \end{array}$		ing data (5 marks)

Cuea/ACD/EXM/MAY – JULY 2016 CHEMISTRY

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

d) At O⁰C and 1atm pressure the volume of a 1.5 mol of an ideal monoatomic gas is 33.63 L. The gas was expanded until its pressure was 0.60 atm by a reversible adiabatic process. Determine the final volume given that $C_v = \frac{3}{2} R$ (6 marks)

- Q2. a) Calculate the standard free energy change for ammonia systhesis at 25° C for the following sets of partial pressures 0.30 atm N₂, 1.2 atm H₂ and 1.6 atm NH₃ (6 marks)
 - b) i What is a carnot cycle?

(2 marks)

- ii A 0.5 mol of an ideal perfect gas was taken through a carnot cycle. Determine w, q, ΔE , ΔH and Δs for each of the step involved between the hot temperature Tn and the cold temperature TI. (10 marks)
 - iii Express the efficiency of the carnot engine as a function of the temperatures. (2 marks)
- Q3. a) Using the parth method or otherwise, derive the Kirchsff's equation and define all the terms. (10 marks)
 - b) i Describe the Joule Thompson experiment on gas expansion. (6 marks)
 - ii Using the above experimental results show that $dE = C_v dT$ and dH = cpdT for 1 mol of an ideal gas. (4 marks)
- Q4. a) Explain how the signs and magnitudes of ΔH and ΔS may be used to predict the spontaneity of a chemical process of various temperatures. (10 marks)
 - b) 4.8g of Magnesium ribbon was reacted with 500ML of a 0.8M Hcl_(aq) solution at 25^oC. Calculate the work done if the reaction was carried out.
 - iIn a vacuum(2 marks)iiIn a closed vessel of fixed volume(2 marks)iiiIn an open beaker(6 marks)(Mg = 24, Cl = 35.5, H = 1)(6 marks)
- Q5. a) Using the 1st and 2nd laws of thermodynamics show that for a reversible expansion of an ideal gas $\Delta S = \int C_v dInT + \int R dInV$ (10 marks)
 - b) Given that PV^r = constant for adiabatic process, show that the work done in a reversible adiabatic expansion of 1 mol of an ideal gas is given by

$$w = -\frac{R}{r-1} (T_f - T_i)$$
 (10 marks)

Cuea/ACD/EXM/MAY – JULY 2016 CHEMISTRY

ISO 9001:2008 Certified by the Kenya Bureau of Standards

Page 2