
f) Determine the $L+$ and L - operating on the eigenstate $|2,-1\rangle$
(6 marks)
g) Generate the first three Hermite polynomials given that;

$$
h_{v}(z)=(-1)^{v} e^{z^{2}} \frac{d^{v}}{d z^{v}} e^{-z^{2}}
$$

(3 marks)
Q2. a) What is the expression for the operator

$$
\left(x \frac{x d}{d x}\right)^{2}
$$

marks)
b) Show that the function $\operatorname{Sin} 3 x$ is an eigenfunction of $\frac{d^{2}}{d x^{2}}$ hence state the eigenvalue.
(4 marks)
c) In a region of space, a particle with mass m and zero energy has a time independent wave function.
$\psi(x)=A x e^{-x^{2} / L^{2}}$
Where A and L are constants. Determine the potential energy $U(x)$ of the particle.
(7 marks)
d) Consider a free particle of mass m confined between two walls separated by a distance a. The motion of the particle along the x axis may be represented by a stationary wave whose equation is;
$\psi(x, t)=\psi_{\max } \sin \left(\frac{\pi n x}{a}\right) \sin (\omega t+\phi)$ show that the amplitude, linear momentum and hence energy of the particle is quantized.
(5 marks)
Q3. a) Show that:
i) $\quad\left[x^{n}, P_{x}\right]=\frac{1}{2 \pi i} n x^{n-1}$
(4 marks)
ii) $\quad\left[x, \frac{d}{d x}\right]=1$
(4 marks)
b) A certain system is decribed by the Hamiltonian operation.
$\hat{H}=\frac{-d^{2}}{d x^{2}}+x^{2}$
i) Show that $\psi=A x \exp \left(-x^{2} / 2\right)$ is an eigenfunction of \hat{H} hence determine the elgenvalue.
ii) Determine A so that the function is normalized.
iii) Determine the expectation value of x for the state described by

$$
\psi=A x \exp \left(x^{2} / 2\right)
$$

Q4. A quantum particle of mass moves in ID incident from the left on a potential step at $x=0$ of height V_{0} described by:

$$
V_{(x)}=\left\{\begin{array}{l}
0 \quad x<0 \\
V_{0} x>0
\end{array}\right.
$$

Consider continuum states with energy E higher than the step.
a) Set up the wave function $\psi(x)$ and apply correct boundary conditions at x = 0
(10 marks)
b) Determine the amplitude of the reflected and transmitted waves relative to the incidents waves.
(6 marks)
c) Show that the incident and the transmitted probability currents and therefore the coefficient of hausmission $T(E)$ can be expressed as a function of energy as;

$$
T(E)=\frac{4 \sqrt{E} \sqrt{E-V_{0}}}{\left(\sqrt{E}+\sqrt{E-V_{o}}\right)^{2}}
$$

Q5. a) Derive expressions that connect the particle like properties; momentum, energy and kinetic energy to their corresponding wavelike properties in quantum mechanics.
b) Find the operators for the linear momentum and kenetic energy of a system.
(6 marks)
c) The annilulation and creation operators are defined as follows:

$$
\begin{aligned}
& \hat{a}=(\beta / \sqrt{2})\left(\hat{x}+i \hat{p} / m w_{0}\right) \\
& \hat{a}^{+}=(\beta / \sqrt{2})\left(\hat{x}+i \hat{p} / m w_{0}\right) \\
& \text { where } ; \beta=\sqrt{\frac{m w_{0}}{\hbar}}
\end{aligned}
$$

Using the fundamental conumitaln

$$
[\hat{x}, \hat{p}]=i \hbar
$$

i) Show that $\left[\hat{a}, \hat{a}^{+}\right]=1$
ii) Show that
$\hat{H}=\hbar w_{0}\left(a^{+} a+\frac{1}{2}\right)$ where \hat{H} is the Hamultonian operator of a simple harmonic Oscillator.

