

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2015 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES (PHYSICS)

SCHOOL FOCUSED PROGRAM

PHY 302: ELECTROMAGNETISM

Date: April 2015Duration: 2 HoursInstructions: Answer Question ONE and any other TWO Questions

Q1 a) The flux of \vec{E} through a surface S is given by $\phi_E = \int \vec{E} \cdot d\vec{a}$

Give the physical interpretation of ϕ_E , $\vec{E}.d\vec{a}$ and $d\vec{a}$.

(3 marks)

b) i) Electric potential obeys the superposition principle. Explain.

(1 mark)

 Find the potential inside and outside a spherical shell of radius R, which carries a uniform surface charge. Set the reference point at infinity.

(6 marks)

c) A point charge q is placed a distance r from a neutral atom of polarizability α . Find the force of attraction between them.

(4 marks)

d) Give poison's and laplace's equations under what circumstances does poisson's equation reduce to Laplace's equation.

(3 marks)

e) i) For currents with appropriate symmetry which magnetastatic law offers an efficient means of calculating the magnetic field?

(1 mark)

ii) Find the magnetic field a distance s from a long straight wire, carrying a steady current I.

(3 marks)

CUEA/ACD/EXM/JANUARY - APRIL 2015/SCIENCE (Physics)

ISO 9001:2008 Certified by the Kenya Bureau of Standards

			$\vec{B} = \nabla x \vec{A}$ yields amperes law.		
		ii)	A short solenoid (length L, and ra length) lies on the axis of a very per unit length). Current I flows mutual inductance in this case?	adius a, with n ₁ turns pe long solenoid (radius b, through the solenoid. V	(3 marks) r unit n ₂ turns Vhat is the
					(4 marks)
	g)	State : i) ii)	the following laws: Faraday's Law Lenz's Law	(1 mark) (1 mark)	
Q2.	a)	Find the electric field a distance Z above the center of a circular disk of radius R, which carries a uniform surface charge σ . What does your formula give in the limit $R \rightarrow \infty$?			
	b)	Use G of radi	auss's Law to find the field outsic ius R and total charge q.	le a uniformly charged s	(10 marks) olid sphere
	-)	Comment on the result obtained in (h) should			(9 marks)
	C)	Comm	ient on the result obtained in (b) a	above.	(1 mark)
Q3.	a)	Derive the expression for the potential produced by a piece of polarized material.			olarized
	b)	Find th carryir	ne magnetic field a distance S fro ng a steady Current I, (Apply Biot	m infinitely long straight – Savart Law.	(10 marks) wire
Q4.	a)	Find the segment	ne electric field a distance Z abov ent of length 2L, which carries a u	e the midpoint of a straig niform line charge λ .	(10 marks) ght line
		U	C	0	(8 marks)
	b)	State	Ganss's Law in integral and differ	ent forms.	(0
	c)	A prim by a u atomic	nitive model of an atom consists on niformly charged spherical cloud collarizability of such an atom.	f a point nucleus (+q) su (-q) of radius a. Calcula	(2 marks) irrounded ite the
	d)	Find thr adius	ne magnetic field a distance Z. al R, which carries a steady curren	bove the center of a circ t I.	(7 marks) ular loop of
					(3 marks)

Show that the divergence of the magnetic vector potential given as

f)

i)

CUEA/ACD/EXM/JANUARY – APRIL 2015/SCIENCE (Physics)

ISO 9001:2008 Certified by the Kenya Bureau of Standards

Q5. a) A spherical shell of radius R, carrying a uniform surface charge σ , is set spinning at angular velocity ω . Find the vector potential it produces at point r.

(15 marks)

b) Find the electric field a distance z above the midpoint between two equal charges, q, a distance d apart.

(5 marks)

END

CUEA/ACD/EXM/JANUARY – APRIL 2015/SCIENCE (Physics)

ISO 9001:2008 Certified by the Kenya Bureau of Standards