

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu

JANUARY – APRIL 2015 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES (PHYSICS)

PHY 102: ELECTRICITY AND MAGNETISM I

Date: April 2015	Duration: 2 Hours
Instructions: Answer Question ONE and an	y other TWO Questions

Physic	cal Cor Electro Mass Permi	istants onic Charge, $e = 1.6 \times 10{\text{-}}19^{\text{C}}$ of Electron, $m_e = 9.11 \times 10^{-31} \text{Kg}$ ttivity of Vacuum; $\varepsilon_o = 8.85 \times 10^{-12} \text{Fm}^{-1}$			
	Perme	eability of Vacuum; $\mu_o = 4 \pi \times 10^{-7} \text{Hm}^{-1}$			
Q1	a)	 Distinguish between the following terms; i) Conductance and conductivity ii) Shunt and multiplier resistors 	(2 marks) (2 marks)		
	b)	Define the following; i) Current density ii) Ohm iii) Coulomb	(1 marks) (1 marks) (1 marks)		
	c)	Calculate the number of electrons passing through a wire per second if current is 1mA. (3 marks			
	d)	A DC Voltage supply gives 50V on open circuit and has an internal resistance of 1K Ω . What reading will a voltmeter give when connected the terminal of this supply if the resistance of the voltmeter is only 4Ω . (4 marks)			
	e)	A parallel plate capacitor of area 0.03m ² has a 2mm gap better plates. The gap is filled with air. If a sheet of insulating mater thick and of relative permittivity 6 is placed between the plate	ween its tw erial 1.5mm		

ond if the arks)

its two .5mm thick and of relative permittivity 6 is placed between the plates, calculate its capacitance. (6 marks)

CUEA/ACD/EXM/JANUARY – APRIL 2015/SCIENCE (Physics)

Page 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

	g)	Calcul centin	late the flux density in the middle of a solenoid having 1 neter and carrying a current of 0.50A given that the med plenoid is air	niddle of a solenoid having 10 turns per t of 0.50A given that the medium within		
	L)			(3 marks)		
	n)	State	State Kirchoff's Laws for circuit networks.	(2 marks)		
	1)	State	the laws of Electromagnetic Induction.	(2 marks)		
Q2.	a)	Derive densit	Derive an expression for the current density, J, in terms of fre density, n, drift velocity, v and electronic charge, e.			
	b)	A cell termin 1.0Ω. resisto	of EMF 1.5V and internal resistance 0.50Ω is joined by nal to the positive terming of a 1.0V cell having internal in . The free terminals of the cells are then connected by sor. Calculate: -	(5 marks) () its positive resistance (2 marks)		
		i) ii) iii)	The power dissipated in the 3.5Ω resistor The power dissipated in each cell.	(2 marks) (2 marks) (2 marks)		
	c)	A coil Deteri	wire has resistance of 6.00Ω at 60° C and 5.25Ω at 15 mine its temperature coefficient of resistance.	°C.		
Q3.	a) Briefly describe how a moving coil meter with a full scale deflection of 10mA and a coil resistance of 5Ω is to be used as					
		i) ii)	An ammeter with a FSD of 2.0A A Voltmeter with a FSD of 20V	(5 marks) (5 marks)		
	b)	State THREE advantages and THREE disadvantages of a potention (6 r				
	c)	Calcu neglig such t	late the value of resistance needed in series with a driven hible internal resistance and approximately 2V Emf to be that $\frac{3}{4}$ of the 4Ω slide wire is required to balance a PD	es cell of arrange of IV.		
Q4.	a)	a)	i)	Calculate the value of the turns ratio needed for an ide transformer to provide 12 VRMS when connected to 2 mains supply.	al 40V RMs	
		ii)	If the transformer is loaded with a non-Inductive 12V, 6 what current would flow in the mains supply?	(3 marks) 60W heater,		
		iii)	If the transformer in practice gives 11.8V RMs and 4.5 the primary current is 0.26A RMs. Calculate the efficie energy conversion by the transformer.	(3 marks) A RMs when ency of		
				(4 marks)		

CUEA/ACD/EXM/JANUARY – APRIL 2015/SCIENCE (Physics)

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- b) i) A 5 μ F capacitor is charged to 4.0V and is removed from the voltage supply. Calculate the energy stored.
 - ii) The 5 μ F capacitor is now connected in parallel with a 3 μ F capacitor. Determine the new energy stored in the capacitor combination.

(5 marks)

iii) Calculate the amount of energy converted to heat by the movement of Charge through the wires between the two capacitors.

(2 marks)

- Q5. a) A 5.0 V RMS, 50Hz Voltage is obtained from a transformer connected to the mains supply and is fed to the Y-plates of a CRO. If the Y sensitivity is set at 10V cm⁻¹ and the time base at 10ms Cm⁻¹
 - i) Determine the total peak-to-peak height of the trace.

(3 marks)

ii) The number of complete cycles of the voltage displayed and if the trace is 4cm wide.

(3 marks)

- b) An electron is accelerated in a uniform electric field between two electrodes 2.0mm apart in a vacuum. It starts off form rest at the Cathode. Calculate.
 - i) The time of flight

(8 marks)

ii) The final velocity if the PD between the electrodes is 20V.

(2 marks)

c) Currents of 5A and 15A respectively flow down two long, straight vertical wires which are 10cm apart. Draw a diagram to show the form of the magnetic field in a plane perpendicular to these wires assuming there is no other magnetic field present hence locate where the Zero Magnetic field is situated.

(4 marks)

END

CUEA/ACD/EXM/JANUARY – APRIL 2015/SCIENCE (Physics)

ISO 9001:2008 Certified by the Kenya Bureau of Standards