

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

JANUARY-APRIL 2024

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25 Fax: 254-20-891084 email:<u>exams@cuea.edu</u> directorofexams@cuea.edu

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 233: ORDINARY DIFFERENTIAL EQUATION 1

DATE	: APRIL 2024	Duration: 2 Hours		
INSTRUCTIONS: Answer Question ONE and any other TWO Questions				
Q1.				
a.	What is homogeneous equation	(1Mark)		
b.	Explain what is meant by the term 'solution of a differential equa	ation' (2 Marks)		
с.	Classify the following equation in terms of order, degree, homog	eneous and non-		
	homogeneous.	(4 Marks)		
	i. $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} - y^2 = 0$			
	ii. $\left(\frac{d^2y}{dx^2}\right)^2 + 6\left(\frac{dy}{dx}\right)^3 - y = \sin 2x$			
d.	Solve for y given			
	i. $\frac{dy}{dx} + 2y = 0$	(3 Marks)		
	ii. $\frac{dy}{dx} = \frac{x}{y}$	(3 Marks)		
e.	Test for the exactness of the following differential equations:			
	i. $(3xy-y^2)dx + (x^2-xy)dy=0$	(3 Marks)		
	ii. $2xy\frac{dy}{dx} + y^2 = e^{2x}$	(3 Marks)		
f.	Find the solution of initial value problem			
	$\frac{dy}{dt} = \frac{-y(1+2t^2)}{t}$ $y(0) = 2$	(5 Marks)		
g.	Solve exact equation			
	$(y^2 - 2x) dx + (2xy + 1) dy = 0$	(6 Marks)		
Q2.				
a.	Solve exact equation $(3x^2y - 1)dx + (x^3 + 6y - y^2)dy = 0$	y(0) = 3 (6 Marks)		
b.	By use of integrating factor solve the equation	. ,		
	$\frac{dy}{dt} + \frac{1}{2}y = 2 + t$	(7 Marks)		

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

c. Solve higher order differential equation below y''' - y'' - y' - 2y = 0

Q3.

a.	Solve the equation $xy \frac{dy}{dx} = x^2 + y^2$	(4 Marks)
b.	Solve the second order linear ODE'S with constant coefficient	(9 Marks)
	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 15y = 0$ given $x = 0, y = 5$ and $\frac{dy}{dx} = 23$	

c. Determine the solution of the equation using method of undetermined coefficients y'' - 4y' + 3y = 9x + 6(7 Marks)

Q4.

a.	Solve $6y'' - y' - y = 0$ $y = 0$ and $y' = 10$ when $x = 0$	(5 Marks)
b.	Solve the equation below by reducing to first order form	
	$(1+x^2)\frac{d^2y}{dx^2} = 2x\frac{dy}{dx}$	
	The curve passes through points $(0,-5)$ and $(1,3)$	(8 Marks)
с.	Applying operator method for particular integrals solve the equation	
	$y'' + 4y' + 4y = e^{3x} + \cos 5X$	(7 Marks)
Q5.		
a.	Find the general solution to the equation	

- b. Solve $y'' + 2y' + y = x^2 e^{2x}$

END

(7 Marks)

(10 Marks) (10 Marks)