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Q1.  

a. Define the following: 

i. Stochastic Process        (2 Marks) 

ii. Ergodic Markov Chain        (2 Marks) 

iii. Counting process         (2 Marks) 

iv. Birth death process        (2 Marks) 

b. Differentiate between a transient and recurrent state    (2 Marks) 

c. When is a random process said to be stationary?     (2 Marks) 

d. In an exam, 10 multiple choice questions are asked where only one out of four questions are 

correct. Find the probability of getting 5 out of 10 questions correct in an answer sheet. 

           (5 Marks) 

e. Let 𝑎𝑘 = 𝑘 for 𝑘 = 0,1,2,3, …,. Show that the generating function for the sequence {𝑎𝑘} is 

given by 𝐴(𝑠) =
𝑠

(1−𝑠)2
        (5 Marks) 

 

f. Consider the Markov chain below 

 

i. Is this chain irreducible? Why?      (2 Marks) 
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ii. Identify the communicating classes.     (3 Marks) 

iii. Let 𝑋0~(
3

4
, 0,

1

4
, 0,0,0,0). What is the probability of the trajectory 1,2,3,2,3,4  

          (3 Marks) 

Q2. 

a. The number of customers arriving at a grocery store can be modelled by a Poisson process 

with intensity 𝜆 = 10 customers per hour. Find the probability that there are 3 customers 

between 11.00 and 11.20 and 7 customers between 11.30 and 12.10  (9 Marks) 

b. Suppose the process {𝑋𝑡: 𝑡 ≥ 0} be a Poisson process having rate 𝜆 = 8. Find 𝑃{𝑋1.5 =

10, 𝑋3.5 = 18, 𝑋5 = 30}   (11 Marks) 

 

Q3. 

a. Given the PMF of a Poisson random variable as 

𝑝(𝑥) =
𝑒𝜆𝜆𝑥

𝑥!
 

i. Determine the generating function     (5 Marks) 

ii. Use the generating function obtained in part (i) above to determine the mean and 

variance of the Bernoulli random variable.    (9 Marks) 

b. When Stéphane plays chess against his favorite computer program, he wins with probability 

0.60, loses with probability 0.40. Assume independence. 

i. Find the probability that Stéphane’s first win happens when he plays his third game. 

          (3 Marks) 

ii. Find the probability that Stéphane wins 7 games, if he plays 10 games. (3 Marks) 

 

Q4. 

Consider the following Markov chain where the bar is state 1, the concert is state 2 and dance is 

state 3. 

 

a. Given that the process starts in state 1 and 𝑋0~(
1

2
,
1

3
,
1

6
), find the probability distribution of 

𝑋2.           (5 Marks) 
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b. Find a stationary distribution for the Markov chain     (15 Marks) 

 

 

Q5. 

Given the probability of success 𝑃(𝑥 = 𝑘) = 𝑃𝑘, 𝑘 = 0,1,2, …. has a generating function 𝑃(𝑠). 

Show that  𝑄(𝑠) =
1−𝑃(𝑠)

1−𝑠
 where 𝑄(𝑠) is the generating function of the probability of failure 

𝑞𝑘 = 𝑃(𝑋 > 𝑘). Hence show that 𝐸(𝑥) = 𝑄(1) and 𝑉𝑎𝑟(𝑥) = 2𝑄′(1) + 𝑄(1) + [𝑄(1)]2. 

(20 Marks) 

 

*END* 


