

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

SEPTEMBER - DECEMBER 2023

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25 Fax: 254-20-891084 email:<u>exams@cuea.edu</u> directorofexams@cuea.edu

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

MAT 335: METHODS OF APPLIED MATHEMATICS I

DATE, DECEMBED 2022	Duration 2 Hours
DATE: DECEMBER 2023	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions	

Q1.

- a) Classify the following 2nd order partial differential equations as parabolic, elliptic or hyperbolic
 - i) $yU_{xx} + U_{yy} = 0$ (2 Marks)
 - ii) $U_{xx} + 2\sin x U_{xy} \cos^2 x U_{yy} \cos x U_y$ (2 Marks)
 - iii) $y^2 U_{xx} 2xy U_{xy} + x^2 U_{yy} = \frac{y^2}{x} U_x + \frac{x^2}{y} U_y$ (2 Marks)

b) Given a Beta function
$$\beta(m,n) = \int x^{m-1} (1-x)^{n-1} dx$$
, prove that $\beta(m,n) = \beta(n,m)$

(3 Marks)

Page 1

- c) Prove that the following mathematical statements are true: i) $L\{a\} = \frac{a}{s}$ (2 Marks) ii) $L\{\sinh at\} = \frac{a}{s^2 - a^2}$ (4 Marks)
- d) Find the general solution of the first order differential equation by use of transforms

$$\frac{dx}{dt} + 2x = 10e^{3t}$$
 given that $x(0) = 6$ (6 Marks)

- e) Find the value of $\Gamma\left(\frac{7}{2}\right)$ (5 Marks)
- f) Use Gamma function to evaluate $\int_0^\infty x^3 e^{-4x} dx$ (4 Marks)

Q2.

a) Apply First Shift Theorem to evaluate $L\{tSin 2t\}$ (4 Marks)

b) Solve the boundary value problem

$$\frac{d^2x}{dt^2} - 3\frac{dy}{dx} + 2x = 2e^{3t}, \quad x_0 = x(0) = 5, \quad x_1 = \frac{d}{dx}(x(0)) = 7$$
(10 Marks)

c) Evaluate
$$\int_0^1 x^4 \sqrt{1-x^2} dx$$

(6 Marks)

Q3.

a) Consider heat conduction in a thin metal bar of length *l* with insulated sides. Let the ends x = 0 and x = l be held at temperature $U = 0^{0}C$ for all t > 0. In addition, suppose that the temperature distribution at t = 0 is U(x, 0) = f(x), $0 \le x \le l$. Determine the temperature distribution in the bar at some subsequent time t > 0. (12 Marks)

b) Find
$$L^{-1}\left\{\frac{5s^2-23s+26}{s^3-6s^2+11s-6}\right\}$$
 (8 Marks)

Q4.

a) Given the Fourier Series as $f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, determine the values of a_0, a_n and b_n . (10 Marks)

b) Find the Fourier series for the function

$$f(x) = \begin{cases} -x; & -\pi < x < 0\\ 0; & 0 < x < \pi\\ f(x) &= f(x+2\pi) \end{cases}$$
 (10 Marks)

END