

# THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

P.O. Box 62157

Fax: 254-20-891084 email: exams@cuea.edu directorofexams@cuea.edu

**GABA CAMPUS - ELDORET** 

MAIN EXAMINATION

## JANUARY-APRIL 2023 TRIMESTER

### FACULTY OF SCIENCE

### DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

### **REGULAR PROGRAMME**

**MAT 335: METHODS I** 

DATE: April 2023 **Duration: 2 Hours** 

Instructions: Answer Question ONE and any other TWO Questions

Q1.

| a) Prove that $L\{t\} = \frac{1}{c^2}$ |  | (3 Marks) |
|----------------------------------------|--|-----------|
|----------------------------------------|--|-----------|

b) Apply First Shift Theorem to evaluate:

| i)  | $L\{2e^{3t}Cos\ 3t\}$ | (3 Marks) |
|-----|-----------------------|-----------|
| ii) | $L\{t^2Sinh\ 3t\}$    | (5 Marks) |

c) Apply L'Hospital Rule to determine

$$L\left\{\frac{\sin at}{t}\right\} \tag{5 Marks}$$

d) Evaluate 
$$L^{-1}\left\{\frac{5s^2 - 23s + 26}{s^3 - 6s^2 + 11s - 6}\right\}$$
 (5 Marks)  
e) Show that  $\Gamma(x+1) = x\Gamma(x)$  (4 Marks)  
f) Prove that  $\beta(m,n) = \beta(n,m)$  (2 Marks)

g) Evaluate 
$$\beta\left(\frac{1}{2},\frac{1}{2}\right)$$
 (3 Marks)

Q2.

a) Classify the following equations as hyperbolic, parabolic or elliptic

| 1)  | Heat equation $\alpha U_{xx} - U_t = 0$   | (2 Marks) |
|-----|-------------------------------------------|-----------|
| ii) | Laplace equation $U_{xx} + U_{yy} = 0$    | (2 Marks) |
| iii | ) Wave equation $c^2 U_{xx} - U_{tt} = 0$ | (2 Marks) |

b) The displacement of a vibrating string is described by the equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

With the boundary conditions

$$x = 0$$
,  $u(0,t) = 0$   
 $x = l$ ,  $u(l,t) = 0$ 

And the initial conditions: t = 0,  $u(x,0) = \phi(x)$ 

Apply the method of separation of variables to find the general solution.

(10 Marks)

c) Find the value of  $\Gamma\left(\frac{5}{2}\right)$  (4 Marks)

Q3.

- a) Use Gamma function to evaluate  $\int_0^\infty x^3 e^{-4x} dx$  (4 Marks)
- b) Find the general solution of the first order differential equation by use of transforms

$$\frac{dx}{dt} + 2x = 10e^{3t}$$
 given that  $x(0) = 6$  (6 Marks)

c) Solve the boundary value problem

$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 2e^{3t}$$

$$x(0) = 5 \quad \text{and} \quad x'(0) = 7$$
(10 Marks)

**Q4.** 

a) Given a Beta function  $\beta(m,n) = \int x^{m-1} (1-x)^{n-1} dx$ , prove that  $\beta(m,n) = \beta(n,m)$ 

(3 Marks)

- b) Use Beta function to evaluate  $\int_0^1 x^4 \sqrt{1 x^2} dx$  (5 Marks)
- c) Find the Fourier series for the function

$$f(x) = \begin{cases} -x; & -\pi < x < 0 \\ 0; & 0 < x < \pi \\ f(x) & = f(x + 2\pi) \end{cases}$$
 (12 Marks)

\*END\*