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Instructions:  Answer Question ONE and any other TWO Questions 

  

Q1. 

a) The displacement of a vibrating string is described by the equation 
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With the boundary conditions 

0x  ,  0),0( tu   

lx   ,  0),( tlu   

 And the initial conditions: 0t  ,  )()0,( xxu     

Apply the method of separation of variables to find the general solution.  

(10 Marks) 

b) Find the general solution of the first order differential equation by use of transforms 

 42  x
dt

dx
 given that 1)0( x       (6 Marks) 

c) Find the value of  )(
2
5       (4 Marks) 

d) Use Gamma function to evaluate  dxex x4
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e) Use Beta function to evaluate  dxxx 4
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Q2. 

a) Prove that  
22
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      (3 Marks) 

b) Solve the boundary value problem 

 tex
dx

dy

dt
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  5)0(0  xx   

    7)0(1  x
dx

d
x        (10 Marks) 

c) Prove that     )(
2
1       (7 Marks) 

Q3.  

a) Solve the boundary value problem for the Laplace equation 

0 yyxx UU  

Where ),( yxU  represents the velocity potential of fluid particle in a certain domain, 

particularly inside a unit circle 122  yx .    (12 Marks) 

b) Prove that x
x

xJ cos
2

)(
2

1


                      (4 Marks) 

 

c) Find 
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Q4.  

a) Apply L’Hospital Rule to calculate the Laplace transform 
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b) Given a Beta function dxxxnm nm 11 )1(),(    , prove that ),(),( mnnm    

 (3 Marks) 

 Find the Fourier series for the function  
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                     (12 Marks) 

  *END* 


