A. M. E. C. E. A
MAIN EXAMINATION

SEPTEMBER - DECEMBER 2022
P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6
Ext 1022/23/25
Fax: 254-20-891084
email:exams@cuea.edu directorofexams@cuea.edu

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 330: ORDINARY DIFFERENTIAL EQUATIONS II

DATE: DECEMBER 2022

Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any other TWO Questions
Q1.
a) i) Show that $y_{1}=e^{x} \sin x$ and $y_{2}=e^{x} \cos x$ are the linearly independent solutions of the differential equation $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
(3 Marks)
ii) What is the general solution?
(1 Mark)
iii) Find the general solution $y(x)$ with the initial conditions $y(0)=2, y^{\prime}(0)=3$.
(3 Marks)
b) By variation of parameters, find the general solution of the differential equation $y^{\prime \prime}-4 y^{\prime}-12 y=3 e^{5 t}$
c) i) Apply variation of parameters to prove that for any given differential equation $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$, the particular integral is given by

$$
\begin{equation*}
y_{p}=-y_{1} \int \frac{y_{2} r}{W} d x+y_{2} \int \frac{y_{1} r}{W} d x \tag{8mark}
\end{equation*}
$$

ii) Apply the relation in (i) above to find the general solution of the differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x
$$

(7 marks)

Q2
a) Show that the following differential equation is exact, hence solve the equation by reducing its order

$$
\begin{equation*}
\left(1+x^{2}\right) y^{\prime \prime}+4 x y^{\prime}+2 y=\sec ^{2} x \tag{10marks}
\end{equation*}
$$

b) Solve the differential equation below by first transforming it into normal form

$$
\left(y^{\prime \prime}+y\right) \cot x+2\left(y^{\prime}+y \tan x\right)=\sec x
$$

a) Write the following equations in Sturm-Liouville form:
i) Legendre's differential equation $y^{\prime \prime}-\frac{2 x}{1-x^{2}} y^{\prime}+\frac{\mu}{1-x^{2}} y=0 \quad$ (2 Marks)
ii) Chebyshev's differential equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+n^{2} y=0$.
(2 Marks)
iii) Parametric Bessel equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(\lambda^{2} x^{2}-m^{2}\right) y=0$.
b) Determine the constants $\lambda_{1}, \lambda_{2}, \lambda_{3}$ so that
$f(x)=\lambda_{1} x+2$
$g(x)=\lambda_{2} x^{2}+\lambda_{3} x+1$ and
$h(x)=x-1$
are mutually orthogonal in $0 \leq x \leq 1$ and then obtain the corresponding orthogonal set.
Q4
a) Solve the higher order differential equation

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}=x e^{x} \tag{5marks}
\end{equation*}
$$

b) Find the curves represented by the solution of $y d x+(z-y) d y+x d z=0$, which lie in the plane $2 x-y-z=1$.
c) Verify that the differential equation below is integrable, hence solve

$$
\begin{equation*}
z y d x=z x d y+y^{2} d z \tag{5marks}
\end{equation*}
$$

