THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

SEPTEMBER - DECEMBER 2022
P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25 Fax: 254-20-891084 email:exams@cuea.edu directorofexams@cuea.edu

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

REGULAR PROGRAMME

MAT 104: ELEMENTS OF LINEAR ALGEBRA

Q1.
a) Given \mathbf{A} and \mathbf{B}, find $\mathbf{3 A} \mathbf{- 2 b}$

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & -2 & 5 \tag{3Marks}\\
0 & -3 & 9 \\
4 & -6 & 7
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ccc}
5 & 0 & -11 \\
3 & -5 & 1 \\
-1 & -9 & 0
\end{array}\right)
$$

b) Compute ($\mathbf{A B})^{\mathrm{T}}$ and $\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$ if

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
-2 & 1 & 0 \\
-3 & -1 & -3
\end{array}\right) \quad \boldsymbol{B}=\left(\begin{array}{ccc}
-2 & 1 & 2 \tag{3Marks}\\
-1 & -2 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

c) Compute $\mathbf{A}^{\mathbf{3}}$ if $\boldsymbol{A}=\left(\begin{array}{cc}-2 & 3 \\ 1 & 0\end{array}\right)$
d) Find the inverse of the matrix $\boldsymbol{A}=\left(\begin{array}{cc}1 & 3 \\ -1 & -2\end{array}\right)$ if it exists.
e) Solve the linear system with elementary row operation.

$$
\begin{aligned}
& -3 x_{1}+2 x_{2}+4 x_{3}=12 \\
& x_{1}-2 x_{3}=-4 \\
& 2 x_{1}-3 x_{2}+4 x_{3}=-3
\end{aligned}
$$

f) Find the characteristic polynomial of the matrix $\boldsymbol{A}=\left(\begin{array}{ll}-2 & 4 \\ -6 & 8\end{array}\right)$
a) Find the general solution of the homogenous system

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 2 & 1 & 4 \\
3 & 7 & 7 & 3 & 3 \\
2 & -5 & 5 & 2 & 9
\end{array}\right)
$$

b) Show that the vectors below are linearly independent $\boldsymbol{V}_{\mathbf{1}}=\left(\begin{array}{l}0 \\ 1 \\ 5\end{array}\right)$ and $\boldsymbol{V}_{\mathbf{2}}=\left(\begin{array}{c}4 \\ -1 \\ 0\end{array}\right)$
(5 Marks)
c) Compute $\mathbf{A B}$ and $\mathbf{B A}$ for the matrix given below and show if matrix multiplication is commutative.
(5 Marks)

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
-4 & 4 & 3 \\
3 & -3 & -1 \\
-2 & -1 & 1
\end{array}\right) \quad \boldsymbol{B}=\left(\begin{array}{ccc}
-1 & -1 & 0 \\
-3 & 0 & -2 \\
-2 & 1 & -2
\end{array}\right)
$$

Q3
a) Find the projection of the vector $\mathbf{V}=(1,2,1)$ on the Vector $\mathbf{U}=(-2,1,3)$ (4 Marks)
b) Find the point of intersection of the plane $3 x-2 y+z=-5$ and the line $x=1+t$, $y=-z+2 t, z=4 t$.
(5 Marks)
c) Solve the system $\mathrm{Ax}=\mathrm{b}$ by Cramers rule given the matrix $\boldsymbol{A}=\left(\begin{array}{ll}2 & 4 \\ 2 & 1\end{array}\right)$ and the vector $b=\binom{2}{-4}$
(3 Marks)
d) Find the parametric equation for the line of intersection of $x-y+2 z=1$ and $x+y+z=3$
(3 Marks)
e) Find the rank and nullify of the matrix $\boldsymbol{A}=\left(\begin{array}{ccc}1 & -3 & -1 \\ -1 & 4 & 2 \\ -1 & 3 & 0\end{array}\right)$
(5 Marks)
Q4
a) Find the Reduced row echelon form of the following system of equation.
(10 Marks)

$$
\begin{aligned}
& 2 x+8 y+4 z=2 \\
& 2 x+5 y+z=5 \\
& 4 x+10 y-z=-1
\end{aligned}
$$

b) Find the Eigen Values of the matrix $A=\left(\begin{array}{ccc}-4 & -6 & -7 \\ 3 & 5 & 3 \\ 0 & 0 & 3\end{array}\right)$
c) Given two matrices A and C below, show that C is the inverse of A
(5 Marks)

$$
A=\left(\begin{array}{ccc}
1 & -3 & 0 \\
-1 & 2 & -2
\end{array}\right) \quad C=\left(\begin{array}{ccc}
-14 & -3 & -6 \\
-5 & -2 & -2
\end{array}\right)
$$

(5 Marks)

Q5
a) Solve if possible the matrix equation $A x=b$
(10 Marks)

$$
A=\left(\begin{array}{ccc}
1 & 3 & -4 \\
1 & 5 & 2 \\
-3 & -7 & 6
\end{array}\right) \quad B=\left(\begin{array}{c}
-2 \\
4 \\
12
\end{array}\right)
$$

b) Compute the determinant of the matrix $A_{2}=\left(\begin{array}{ccc}4 & -2 & 3 \\ 2 & 3 & 5 \\ 1 & 0 & 6\end{array}\right)$
c) Find the equation of the plane through the points $(2,4,-1)$ with normal vector $\mathbf{n}=(2,3$, 4). Find the intercept and sketch the plane.
END

