Date: APRIL 2022 Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions

Q1.
(a) Define the following terminologies:
i. Thermodynamics
ii. thermodynamic system
iii. phase
(b) Write down the four thermodynamic potentials in their equation form
(c) Show that for an ideal gas, the specific heat capacity at constant pressure is given by

$$
C_{p}=\left(\frac{\gamma}{\gamma-1}\right) R
$$

Where R is the universal gas constant and γ is the adiabatic constant
(6marks)
(d) One mole of an ideal gas undergoes a reversible isothermal expansion from volume V to volume 2 V . Show that the change in entropy of the gas is given by

$$
\begin{equation*}
\Delta S_{g a s}=R \ln 2 \tag{4marks}
\end{equation*}
$$

(e) Given that $U=U(P T)$ and $V=V(P T)$, show that the specific heat capacity at constant pressure can be expressed as

$$
C_{p}=\left(\frac{\partial H}{\partial T}\right)_{P}
$$

Q2.
(a) Distinguish between:
i. closed and isolated systems
(4marks)
ii. adiabatic and diathermal walls
(b) define Gibb's free energy and show that for a reversible isothermal and isobaric process, $\Delta G=0$
(4marks)
(c) A liquid of mass M and specific heat capacity C_{p} at temperature T_{1} is mixed with an equal amount of the same liquid at temperature T_{2}.the system is thermally insulated. Find the total entropy and show that it is always positive.
(8marks)

Q3.
(a) Distinguish between Intensive and Extensive variables (2marks)
(b) Show that if two bodies of thermal capacities C_{1} and C_{2} at temperatures T_{1} and T_{2} are brought to the same temperature T by means of a reversible engine, then

$$
\begin{equation*}
\ln T=\frac{C_{1} \ln T_{1}+C_{2} \ln T_{2}}{C_{1}+C_{2}} \tag{8marks}
\end{equation*}
$$

(c) Derive the Clausius- Clapeyron equation

Q4.
(a) State
i. Helmholtz free energy
ii. Enthalpy
(b) Calculate the change in entropy of 5 kg of water when it is heated reversibly from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ given that the specific heat capacity of water is $4200 \mathrm{~J} / \mathrm{kg} \mathrm{K}$

(4marks)

(c) Derive the Maxwell's thermodynamic relations from the thermodynamic potentials
(12marks)
Q5.
(a) Using Maxwell's first relation and any other appropriate relations and functions, derive
i. The energy equations
(5marks)
ii. The first Tds equation
(d) In a cyclic process, heat transfer are $+14 \mathrm{KJ},-25.2 \mathrm{KJ},-356 \mathrm{KJ}$ and +31.5 KJ . for the cyclic process, determine the net work done
(4marks)
(e) The equation of state for a certain gas is given by $P v=R T\left(I+\frac{b}{v}\right)$

Show that the internal energy U of the gas expressed in terms of entropy S and volume V is given by $U=f\left(S-R \ln U+\frac{b R}{v}\right) T$
Where f is some functions

