

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

JANUARY – APRIL 2022

FACULTY OF ARTS AND SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

REGULAR PROGRAMME

ECN 317: MATHEMATICS FOR ECONOMISTS II

Date: APRIL 2022	Duration: 2 Hours	
INSTRUCTIONS: Answer Question ONE and any TWO Questions		

- Q1.
 - a) A company can produce two products, A and B. The profit per unit of A produced is 6 dollars while the profits per B produced are 8 dollars. To produce a unit of A, the company requires 30 labour hours and 20 labour hours for B. The machine hours required are 5 and 10 hours for A and B, respectively. The total availability is 150 and 200 hours for machine and labour processes, respectively.
 - i) Formulate this problem as a linear programming problem. (3 Marks)
 - ii) What should be the optimal production of products A and B. Use the simplex method to solve. (6 Marks)
 - iii) Formulate the dual problem of the primal problem (4 Marks)
 - b) Determine whether the following functions are linearly dependent. (4

Marks)

- $y_1 = 3x_1^2 + 2x_2^2$ $y_2 = 5x_1 + 1$
- c) Highlight the Kuhn-Tucker necessary conditions for a minimum and a maximum.

(5 Marks)

d) The supply and demand function of cabbage is given as:

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Qdt = 125 - 21		
$Qst = -50 + 1.5 P_{t-1}$		
Required:		
i)	Determine the equilibrium price.	(2
	Marks)	
ii)	Find the general and particular solution.	(4
	Marks)	
iii)	Is the price stable?	(2
	Marks)	

a) Solve the following three simultaneous equations using the gauss Jordan elimination method. (10 Marks)

$$X - Z = 4$$

2 Y - Z = 6
X + Y = 10

- b) Differentiate between a homogeneous and a non-homogeneous difference equation. (4 Marks)
- c) Solve the following difference equations.

i)	$Y_{t+1} = 0.2 Y_t + 4$	(3 Marks)
ii)	$Y_{t+1} = 1.2 Y_t, Y_0 = 5$	(3 Marks)

Q3.

- a) With the aid of relevant examples, differentiate between the first-order linear differential function and the second-order third-degree differential function. (4 Marks)
- b) Determine if the following function is concave or convex.

$$Z=2x-y-x^2+2xy-y^2$$

c) Solve the following maximization problem and show all the necessary Kuhn-Tucker conditions.

(12 Marks)

Max u = xyst. $x + y \le 100$ $x \le 40$ $x, y \ge 0$

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

(4 Marks)

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Q4.

a) Determine if the following functions are positive definite or negative definite using the Hessian determinants.

i)
$$Z=2XY-X^2+5Y^2$$
 (3 Marks)
ii) $Z=200-2x^2-y^2-3w-xy-e^{x+y+w}$ (4 Marks)

b) Given demand and supply for the cobweb model as follows,

$$Q_{dt} = 22 - 3P_1Q_{st} = -2 + P_{t-1}$$

Where,

 Q_{dt} is the quantity demanded and Q_{st} is the quantity supplied.

- i) Find the inter-temporal equilibrium prices. (3 Marks)
- ii) Determine whether the equilibrium is stable. (4 Marks)
- c) Solve for Y in the following differential equations.

i)
$$\frac{dy}{dt} = \frac{t}{y}$$
 (3 Marks)
ii) $\frac{dy}{dt} + 2ty = t$ (3 Marks)

Q5.

- a) Determine if a Cobb-Douglas production function given as $Q = A K^{\beta} L^{\alpha}$ is concave or convex given that $\beta + \alpha \le 1$. (5 Marks)
- b) Integrate the following functions:

i)	$\int (x+3)(x+1)^{\frac{1}{2}}dx$	(5 Marks)
ii)	$\int x^3 \cdot (Lnx^2) dx$	(5 Marks)

iii) $\int 6x^2(x^3+2)^{99}dx$ (5 Marks)

END

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING