

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

JANUARY – APRIL 2022

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

REGULAR PROGRAMME

CMT 206/PHY 314: OPERATING SYSTEMS

Date: APRIL 2022	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and an	y TWO Questions

Q1. a) Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6

How many page faults would occur with 5 empty page frames using the following page replacement algorithms?

i) Least Recently Used	(4 marks)
ii) First-In First-Out	(4 marks)
iii) Optimal	(4 marks)

b) Consider the following snapshot of a system.

	Al	locati	ion			Μ	ax			Ne	eed			Avai	lable	
	U	V	W	Х	U	V	W	X	U	V	W	Х	U	V	W	Χ
Α	0	0	1	4	1	2	4	4	1	1	2	0	0	1	1	0
В	1	1	2	0	1	2	3	0	0	1	1	0				
С	1	3	0	0	4	3	0	0	3	0	0	0				
D	2	0	1	0	4	6	6	2	2	2	5	2				
E	1	3	2	6	1	4	6	9	0	1	4	3				

i) Using Banker's algorithm, calculate the steps to find a safe sequence.

(8 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

ISO 9001:2015 Certified by the Kenya Bureau of Standards

ii) Is this system in a safe state? (Show the sequence) (2 marks)

c) What is a bootstrap program, and where is it stored?	(2 Marks)
d) What role do device controllers and device drivers play in a computer system?	(2 Marks)
e) Explain why an operating system can be viewed as a resource allocator.	(2 Marks)
f) Describe the operating system's two modes of operation.	(2 Marks)

Q2. a) Consider a logical address space of eight pages mapped onto a physical memory of 32 frames. Given that the frame size is 1024 bytes, calculate the following:

a) How many bits for page number?	(2 Marks)
b) How many bits offset?	(2 Marks)
c) How many bits are there in the logical address?	(2 Marks)
d) The logical address space?	(2 Marks)
e) The physical address space?	(2 Marks)

b) Consider a simple segmentation system that has the following segment table:

Process X					
Segment	Base	Limit			
0	660	248			
1	1752	422			
2	222	198			
3	996	604			

For each of the following logical addresses, determine the physical address or indicate if a segment fault occurs:

a) 0, 198	(2 Marks)
b) 2, 156	(2 Marks)
c) 1, 530	(2 Marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

d) 3, 444 e) 0, 222	(2 Marks) (2 Marks)
Q3. a)i) What is the purpose of Amdahl's Law?	(2 Marks)
ii) If an application is 50% parallel and 50% serial, moving from 1 to 2 cores rest overall system speedup?	ults in what (2 Marks)
b)) i) What is a critical section problem?	(2 marks)
ii) Define the three conditions that must be satisfied for a critical section problem	n to be solved. (6
marks)	× ×
c)i) When several processes access the same data concurrently and the outcome of depends on the particular order in which the access takes place is called	
ii) If a process is executing in its critical section, then no other processes can be a their critical section. What is this condition called?	executing in (1 Mark)
iii) When high priority task is indirectly pre-empted by medium priority task effective to the relative priority of the two tasks, the scenario is called	ectively (1 Mark)
iv) A situation in which a process is ready to execute but is continuously denied a processor in deference to other processes.	access to a (1 mark)
d) i) What are the two types of semaphores?	(2 Marks)
ii) What are the two functions that control the critical section?	(2 Marks)
Q4. a) Assume that the list of holes in a variable partition memory system contai	ns the following

entries (in the given order) 190KB, 550KB, 220KB, 420KB, 650KB, 110KB. Consider the following sequence of requests: A = 210KB, B =430KB, C = 100KB, D = 420KB Determine which holes would be allocated to which request by each of the following schemes: i) First- Fit (2 marks) ii) Next-Fit (2 marks) iii) Best-Fit (2 marks) iv) Worst-Fit (2 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 3

ISO 9001:2015 Certified by the Kenya Bureau of Standards

b) List the four major categories of the benefits of multithreaded programming. B	riefly explain
each.	(4 marks)
c) In the context of multicore programming, what is the difference between parallel	elism and
concurrency?	(2 marks)
d) Describe the dining-philosophers problem and how it relates to operating system	ms
	(4 marks)
e) Write two short functions that implement the simple semaphore wait() and sign	al() operations
on global variable S.	(2 Marks)
Q5. a) i) Describe two advantages and one disadvantage of using a microkernel ap	-
	(3 Marks)
ii) Explain why a modular kernel may be the best of the current operating system techniques.	design (2 Marks)
b) i) Name and describe the different states that a process can exist in at any given	n time.
	(5 Marks)
ii) Explain two main differences between a short-term and long-term scheduler.	(2 Marks)
c) Explain the concept of a context switch.	(2 Marks)
d) Multicore systems present certain challenges for multithreaded programming. If four challenges.	Briefly describe (4 Marks)
e) What role does the dispatcher play in CPU scheduling?	(2 Marks)

END