THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
P.O. Box 62157
00200 Nairobi - Kenya
Telephone: 891601-6 Fax: 254-20-891084
e-mail:academics@cuea.edu

GABA CAMPUS - ELDORET
 MAIN EXAMINATION

 SEPTEMBER - DECEMBER 2021 TRIMESTER

 SEPTEMBER - DECEMBER 2021 TRIMESTER
 FACULTY OF SCIENCE

 BACHELOR OF SCIENCE

 BACHELOR OF SCIENCE
 DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE
 MAT 335: METHODS OF APPLIED MATHEMATICS I

Date: December 2021
Duration: 2 Hours
Instructions: Answer Question ONE and any other TWO Questions

QUESTION ONE

a) The displacement of a vibrating string is described by the equation
$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
With the boundary conditions

$$
\begin{array}{ll}
x=0, & u(0, t)=0 \\
x=l, & u(l, t)=0
\end{array}
$$

And the initial conditions: $t=0$,

$$
u(x, 0)=\phi(x)
$$

Apply the method of separation of variables to find the general solution.
b) Find the general solution of the first order differential equation by use of transforms
$\frac{d x}{d t}-2 x=4 \quad$ given that $x(0)=1$
c) Find the value of $\Gamma\left(\frac{5}{2}\right)$
(4 marks)
d) Use Gamma function to evaluate $\int_{0}^{\infty} x^{3} e^{-4 x} d x$
e) Use Beta function to evaluate $\int_{0}^{1} x^{5}(1-x)^{4} d x$

QUESTION TWO

a) Prove that $L\{\cosh a t\}=\frac{s}{s^{2}-a^{2}}$
b) Solve the boundary value problem

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}-3 \frac{d y}{d x}+2 x=2 e^{3 t} \\
& x_{0}=x(0)=5 \\
& x_{1}=\frac{d}{d x}(x(0))=7
\end{aligned}
$$

c) Prove that $L^{-1}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$

QUESTION THREE

a) Solve the boundary value problem for the Laplace equation

$$
U_{x x}+U_{y y}=0
$$

Where $U(x, y)$ represents the velocity potential of fluid particle in a certain domain, particularly inside a unit circle $x^{2}+y^{2}>1$.
(12 marks)
b) Solve the differential equation

$$
\begin{equation*}
X^{\prime \prime}-4 X=24 \operatorname{Cos} 2 t, X_{0}=3, X_{1}=4 \tag{8marks}
\end{equation*}
$$

QUESTION FOUR

a) Apply L'Hospital Rule to calculate the Laplace transform

$$
\begin{equation*}
L\left\{\frac{\sin a t}{t}\right\} \tag{5marks}
\end{equation*}
$$

b) Given a Beta function $\beta(m, n)=\int x^{m-1}(1-x)^{n-1} d x$, prove that $\beta(m, n)=\beta(n, m)$
(3 marks)
c) Find the Fourier series for the function

$$
f(x)= \begin{cases}-x ; & -\pi<x<0 \\ 0 ; & 0<x<\pi \\ f(x) & =f(x+2 \pi)\end{cases}
$$

(12 marks)

END

