THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - Kenya
Telephone: 891601-6
Fax: 254-20-891084
e-mail:academics@cuea.edu

GABA CAMPUS - ELDORET

MAIN EXAMINATION
SEPTEMBER - DECEMBER 2021 TRIMESTER
FACULTY OF SCIENCE

BACHELOR OF SCIENCE

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE MAT 204: LINEAR ALGEBRA II

Date: December $2021 \quad$ Duration: 2 Hours
Instructions: Answer Question ONE and any other TWO Questions

QUESTION ONE

a) Given two vectors $f(t)=t^{2}$ and $g(t)=t-3 t^{2}$. Find:
i) The inner product of the two vectors of polynomials of order ≤ 2 in an interval $[0,1]$.
ii) The angle between $f(t)$ and $g(t)$.
b) Determine whether the function below is a linear transformation

$$
T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { with } \quad T\left(\left[\begin{array}{l}
x \tag{3marks}\\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+y \\
y
\end{array}\right]
$$

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation by $T\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}-2 x_{2} \\ -x_{2} \\ 3 x_{1}-5 x_{2}\end{array}\right]$
c) Find the matrix A, such that $T(\vec{x})=A \vec{x} \quad \forall \quad \vec{x} \in \mathbb{R}^{2}$.
(3 marks)
d) Suppose u and v are orthogonal vectors in V, prove that

$$
\begin{equation*}
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2} \tag{3marks}
\end{equation*}
$$

e) Given the system below, find the Eigen values and Eigen vectors

$$
\begin{align*}
& 2 x_{1}+2 x_{2}=0 \\
& 5 x_{1}-x_{2}=0 \tag{4marks}
\end{align*}
$$

f) Find the general solution of the system

$$
\begin{align*}
\frac{d x}{d t} & =x-2 y \\
\text { And } \quad \frac{d y}{d t} & =-5 x+4 y \tag{6marks}
\end{align*}
$$

g) Find the Frobenius inner product of the two matrices A and B, given that
$A=\left(\begin{array}{ccc}3 & 9 & 14 \\ 2 & -11 & 7 \\ 3 & 5 & -6\end{array}\right)$ and $B=\left(\begin{array}{ccc}19 & -5 & 5 \\ 7 & 13 & 4 \\ 2 & 12 & 8\end{array}\right)$

QUESTION TWO

a) Show that the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are linearly independent given that $\vec{v}_{1}=(1,1,1), \vec{v}_{2}=(-2,1,1)$ and $\vec{v}_{3}=(0,1,-1)$. Also find a vector $\vec{A}=(5,3,1)$, as a linear combination of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
(5 marks)
b) Given the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} as $\vec{v}_{1}=(1,1,1), \vec{v}_{2}=(-2,1,1)$ and $\vec{v}_{3}=(0,1,-1)$, compute orthonormal basis for \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}, hence show that $A^{-1}=A^{T}$, where A is a matrix whose columns are orthonormal basis of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
(5 marks)
c) Apply Gram-Schmidt algorithm to orthonormalize the set of vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \tag{5marks}\\
-1 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

Examine the space V spanned by the two vectors $\vec{v}_{1}=(1,2,2)$ and $\vec{v}_{2}=(0,3,6)$. Find an orthonormal basis for V.

QUESTION THREE

a) Show that the vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3} are linearly independent given that $\vec{v}_{1}=$ $(1,0,-1), \vec{v}_{2}=(1, \sqrt{2}, 1)$ and $\vec{v}_{3}=(1, \sqrt{2}, 1)$. Also find a vector $\vec{A}=(7, \sqrt{2}, 3)$, as a linear combination of \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}.
b) Find the general solution of the system

$$
\begin{align*}
\frac{d x}{d t} & =y \\
\text { And } \frac{d y}{d t} & =-x \tag{7marks}
\end{align*}
$$

c) Determine the component vector of $p(x)=5+7 x-3 x^{2}$ relative to the following:
i) The standard (ordered) basis $B=\left\{1, x, x^{2}\right\}$.
ii) The ordered basis $C=\left\{1+x, 2+3 x, 5+x+x^{2}\right\}$.
d) Let $B=\{(3,1),(-2,1)\}$ and $B^{\prime}=\{(2,1),(1,4)\}$ be ordered bases for \mathbb{R}^{2}. Obtain the transition matrix P from B-basis to B^{\prime}-basis.
(4 marks)

QUESTION FOUR

a) Compute the Eigenvectors for $A=\left(\begin{array}{ccc}7 & -2 & -4 \\ 3 & 0 & -2 \\ 6 & -2 & -3\end{array}\right)$
(8 marks)
b) Find the diagonalization of the matrix $\quad B=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right) \quad$ (8 marks)
c) Given that $f(x)=3 x$ and $g(x)=1+x^{2}$. Find the angle between $f(x)$ and $g(x)$, which are vectors of polynomials of order ≤ 2 in an interval $[0,1]$.
(4 marks)

END

