

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

REGULAR PROGRAMME

PHY 312: AC CIRCUIT THEORY

Date: DE	CEMBER 2021	Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions		
Q1.		
a) Giv b) An	/ing mathematical expressions define K alternating voltage is given by v=282.8	irchhoff's laws ; (3 marks) cos314 <i>t</i> volts. Find;
	i). the rms voltage,	(4 marks)
	ii). the frequency and	(3 marks)
`	iii). the instantaneous value of voltage	when $t = 4$ ms. (3 marks)
C)	A circuit consist of an inductor of 65mF	I and a capacitor of 20μ F. Given that
d)	the circuit is at resonance, find the reso	Sinance frequency(f_0). (4 marks)
	i) What do you understand by the t circuit	erm resonance frequency in an R-LC
		(1 mark)
	ii) Show that the resonance frequence	cy is given by $\omega_0 = \frac{1}{\sqrt{LC}}$. (4)
e)	marks) A 22 Ω resistor is connected to a batter	ry of emf 3 V and an internal resistor of
	i) Total current in the circuit	
	ii) the terminal voltage of the battery	
	iii) the power delivered by the source v	/oltage
		(o marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

a) An ac voltage is given by the equation $V(t) = 36 \sin 3\pi i$. Determine;

i). Phase constant

ii). Frequency of the ac voltage

(6 Marks) (4 marks)

- b)
- c) By expressing the source voltage in the circuit below in phasor form, determine the voltage across the 10*m*Fcapacitor. (10marks)

Q3.

a) The circuit below represent a network of resistors with current I₁, I₂ and I₃ flowing through the circuit as indicated. Taking advantage of the indicated loops. Solve for current I₁, I₂ and I₃ using mesh current method. **(8 marks)**

b) An AC voltage source with amplitude 15V and frequency 60Hz is applied across a 30mH inductor. Find the actual expression for the resulting AC current.

(6 marks)

(2 marks)

c) An RLC circuit all connected in series with an emf source V. if the current flowing in the circuit is I, derive an expression for the total impedance Z of the circuit.
 (6 marks)

Q4.

- a) What do you understand by the terms;
 - i). Mutual inductance

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

Q2.

- ii). Magnetically coupled circuits
- b)
- i). Differentiate between instantaneous and average power giving mathematical expression in each case (4 marks)
- ii). State the dot convention principle in the two forms (2 marks)
- c) Calculate the phasor currents I_1 and I_2 in the circuit shown below (6 marks)

- d) Determine the capacitive reactance of a capacitor of 10μF when connected to a circuit of frequency
 (6 marks)
 - i). 50 Hz
 - ii). 20 kHz.

Q5.

a) The ac bridge circuit in the figure below balances when Z_1 is a $1k\Omega$ resistor, Z_2 is a $4.2k\Omega$ resistor, Z_3 is a parallel combination of a $1.5M\Omega$ resistor and a 12pF capacitor, and f = 2 kHz. Find the series components that make-up Z_x . (8 marks)

- b) Considering that instantaneous power is given as P(t) = V(t)I(t). Show that the time independent component of the instantaneous power is given as $\frac{1}{2}V_0I_0\cos{(\Phi_v \Phi_i)}$. (6marks)
- c) Using node voltage method determine the current in the following circuit with reference to the indicated direction (6 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

$$\begin{array}{c|c} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ &$$

off off 2022

END

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 4

ISO 9001:2015 Certified by the Kenya Bureau of Standards