THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157

00200 Nairobi - KENYA
Telephone: 891601-6
Ext 1022/23/25
SEPTEMBER -DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES
REGULAR PROGRAMME
PHY 312: AC CIRCUIT THEORY

Date: DECEMBER 2021
 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions
Q1.
a) Giving mathematical expressions define Kirchhoff's laws ;
b) An alternating voltage is given by $v=282.8 \cos 314 t \mathrm{volts}$. Find;
i). the rms voltage,
(4 marks)
ii). the frequency and
(3 marks)
iii). the instantaneous value of voltage when $t=4 \mathrm{~ms}$.
(3 marks)
c) A circuit consist of an inductor of 65 mH and a capacitor of $20 \mu \mathrm{~F}$. Given that the circuit is at resonance, find the resonance frequency $\left(f_{0}\right)$.
(4 marks)
d)
i) What do you understand by the term resonance frequency in an R-LC circuit
ii) Show that the resonance frequency is given by $\omega_{0}=\frac{1}{\sqrt{L C}}$. marks)
e) A 22Ω resistor is connected to a battery of emf 3 V and an internal resistor of 1Ω. Find;
i) Total current in the circuit
ii) the terminal voltage of the battery
iii) the power delivered by the source voltage
iv) the power delivered to the external resistor

Q2.
a) An ac voltage is given by the equation $V(t)=36 \sin 3 \pi i$. Determine;
i). Phase constant
(6 Marks)
ii). Frequency of the ac voltage
b)
c) By expressing the source voltage in the circuit below in phasor form, determine the voltage across the 10 mF capacitor.

Q3.
a) The circuit below represent a network of resistors with current I_{1}, I_{2} and I_{3} flowing through the circuit as indicated. Taking advantage of the indicated loops. Solve for current I_{1}, I_{2} and I_{3} using mesh current method.
(8 marks)

b) An AC voltage source with amplitude 15 V and frequency 60 Hz is applied across a 30 mH inductor. Find the actual expression for the resulting $A C$ current.
(6 marks)
c) An RLC circuit all connected in series with an emf source V . if the current flowing in the circuit is I, derive an expression for the total impedance Z of the circuit.
(6 marks)
Q4.
a) What do you understand by the terms;
(2 marks)
i). Mutual inductance
ii). Magnetically coupled circuits
b)
i). Differentiate between instantaneous and average power giving mathematical expression in each case
ii). State the dot convention principle in the two forms
c) Calculate the phasor currents \mathbf{I}_{1} and \mathbf{I}_{2} in the circuit shown below

d) Determine the capacitive reactance of a capacitor of $10 \mu \mathrm{~F}$ when connected to a circuit of frequency
(6 marks)
i). 50 Hz
ii). 20 kHz .

Q5.
a) The ac bridge circuit in the figure below balances when Z_{1} is a $1 \mathrm{k} \Omega$ resistor, Z_{2} is a $4.2 \mathrm{k} \Omega$ resistor, Z_{3} is a parallel combination of a $1.5 \mathrm{M} \Omega$ resistor and a 12 pF capacitor, and $f=2 \mathrm{kHz}$. Find the series components that make-up Z_{x}. (8 marks)

b) Considering that instantaneous power is given as $P(t)=V(t) I(t)$. Show that the time independent component of the instantaneous power is given as $\frac{1}{2} V_{0} I_{0} \cos \left(\Phi_{v}-\Phi_{i}\right)$.
c) Using node voltage method determine the current in the following circuit with reference to the indicated direction
(6 marks)

END

