

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

REGULAR PROGRAMME

PHY 307: PHYSICAL ELECTRONICS

Date: DECEMBER 2021		Duration: 2 Hours	
INSTRUCTIONS: Answer Question ONE and any TWO Questions			

You may use the following list of constants

- 6.63 x 10⁻³⁴ J.s • Planks constant (h) 1.602 x 10 -19 C • Electronic charge • Germanium electron mobility (μ<u>ί</u>ιn)ί 3600 cm²V⁻¹s⁻¹ • Intrinsic carrier concentration of germanium(n_i) 2.5 x10¹³ cm⁻³ • Ratio ii for germanium at 300K 2.0 Speed of light in a vacuum 2.99792 x 10⁸ m/s
- $\circ \mu_n$ for silicon 0.135m³/v-s 0.048m³/v-s
- $\circ \mu_p$ for silicon

Q1.

- a) Differentiate between elemental and compound semiconductors (2 marks)
- b) Using sketches of energy band diagrams distinguish between direct and indirect transition in semiconductors citing examples in each case. (4 marks)
- c) Find the room temperature resistivity of an n-type silicon doped with 10¹⁵ phosphorus atoms/cm³. (3 marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

- d) Determine the miller indices of a plane intercepting the x-axis, y-axis and z-axis at $,\frac{1}{3}$, -1 and 1 respectively (3 marks)
- e) Distinguish between the valence band and conduction band in semiconductors clearly explaining the concept of band gap in semiconductors (4 marks)
- f) Using energy band diagrams clearly differentiate between metals semiconductors and insulators in terms of their electrical behavior

marks)

- g) Define the following terms
 - i. Doping
 - ii. Drift current
 - iii. Diffusion current
 - iv. Mobility

(4 marks)

(4

- h) With the aid of a diagram distinguish between forward and reverse biasing of a P-N junction (4 marks)
- i) Determine the germanium P-N junction diode current for the forward bias voltage of 0.25 V at room temperature of 26°C with reverse saturation current equal to 2 mA. Take η=2.
 (4 marks)

Q2.

- a) A germanium semiconductor at 300kis doped with donor impurity at a rate of 10⁶ germanium atoms for every donor atom. Calculate the resistivity of the resulting semiconductor device. Assume there are 4.2 x 10²² germanium atoms per cubic centimeter.
- b) Movement of charge carriers a cross a P-N junction determines the total current passing through the junction. State and explain any two processes through which charge carriers move across the P-N junction. What are the factors that affect their movement?.
 (5 marks)
- c) Draw the current voltage (I-V) characteristics of a p-n junction diode, state the equation relating the total current through the junction and the applied voltage.

(3

marks)

d) Given that the drift current density is

$$J_{drift} = e(\mu_p p + \mu_n n)E$$

Show that the resistivity of an n-type material is given as $\rho = \frac{1}{e \mu_n n}$ (6 marks)

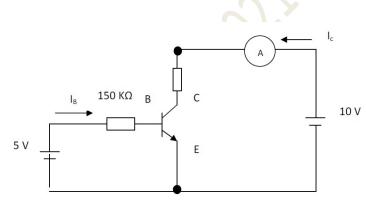
Q3.

- a) Briefly explain the following terms
 - (i) Active region in C-B configuration
 - (ii) Saturation region in C-E configuration
- b) Draw a circuit for n-p-n transistor in the common emitter(C-E) configuration for an active mode operation and derive an expression for the collector current.

(5 marks)

(4

(2 marks)


(2 marks)

c) Using a circuit diagram explain any bipolar junction transistor (BJT) model.

marks)

- d) The collector current in common base configuration is 6 mA, given that the base current is 150 μ A. Determine the emitter current. (3 marks)
- e) Find the following transistor currents in the circuit shown below given that V_{BE} =0.7 V and β =100
 - i). I_B , I_C and I_E

(4 marks)

Q4.

a) A sample of Si is doped with 10^{17} phosphorus atoms/cm³. Given that W=500 µm, A=0.0025 cm², I=1 mA and BZ=1x10⁻⁴ Wb/cm², find the Hall voltage.

(4

- marks)b) Outline the two categories of JFET(2 marks)c) Define the following terms as used in JFET(4 marks)
 - (i) Pinch voltage
 - (ii) Transconductance
 - (iii) Channel
 - $(iv)I_{DSS}$

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 3

ISO 9001:2015 Certified by the Kenya Bureau of Standards

- d) A wire of radius 1.0×10⁻³m and conductivity of 5.8×10⁷s/m and electron mobility 0.0032m²/Vs is subjected to an electric field of 20mV/m.
 Find
 - i). The charge density of the free electrons (3 marks)
 - ii). The current density
 - iii). The current flowing in the wire
 - iv). The electron drift velocity

- (2 marks)
- (3 marks) (2 marks)
 - (2 marks) (3 marks)

Q5.

a)	What is a p-n junction diode	(1 mark)	
b)	Explain the possible biasing of a junction diode in a circuit	(2 marks)	
c)	Silicon diode has a saturation current of 0.01 μ A at room temperature of 300K.		
	Find the saturation current at 400K.	(5 marks)	
d)	A transistor has β =180. Calculate the approximate collector and bas	se currents, if	
	the emitter current is 12 mA.	(3 marks)	
e)	Determine the germanium P-N junction diode current for the forward bias voltage		
	of 0.25V at a temperature of 500K with reverse saturation current of 1 mA.		
		(3	
	marks)		
f)	With the aid of a diagram explain forward and reverse biasing of a p	o-n junction	
		(4	

marks)

g) Describe how a space charge region is formed in a p-n junction. (2 marks)

OTE DE 202

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 5

ISO 9001:2015 Certified by the Kenya Bureau of Standards