

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

P.O. Box 62157

00200 Nairobi - KENYA

MAIN EXAMINATION

Telephone: 891601-6

Ext 1022/23/25

SEPTEMBER -DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

REGULAR PROGRAMME

PHY 418: ATOMIC PHYSICS

Date: DECEMBER 2021 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions

Physical constants

e =
$$1.6 \times 10^{-19} C$$

 $h = 6.63 \times 10^{-34} Js$
 $m_e = 9.11 \times 10^{-31} Kg$
 $\varepsilon_0 = 8.85 \times 10^{-12} F/m$
 $1 U = 1.66054 \times 10^{-27} Kg$
Atomic weight of gold = $197U$
 $c = 3.0 \times 10^8 m/s$
Avagadros constant $N_A = 6.2 \times 10^{23} / mol$
 $m_p = 1.673 \times 10^{-27} Kg$
Density of gold $\rho = 19.3 g/cm^3$

Q1 (a) Distinguish between Rutherford and Bohr's models of the atom

(5marks)

(b) Explain the meaning of the following terms;

(i) Nucleons (2marks)

(ii) Bremsstrahlung (2marks)

(iii) Impact parameter (2marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

(c) Find th	the fraction of 7.7 MeV α - particles that would be deflected at 90 $^{\circ}$ or more from	a gold
foil of thickness $10^{-6} m$.		(5marks)
(d) Explai	in how we can determine the classical impact parameter for a bombarding parti-	cle and
a target scat	terer of like charges.	(4marks)
(e) Show	that a photon cannot produce an electron – positron pair in free space.	(6marks)
(f) The m	ass decrease for the decay of one Radium atom is $8.8 \times 10^{-30} kg$. Find the ener	gy equivalent
of this mass	change	(4marks)
Q2. (a) An	X-rays of wavelength 0.050nm scatters from gold target.	
(i) Car	the X-rays be Compton scattered from an electron bound by as much as 6200	0eV?(3marks)
(ii) Wl	nat is the largest wavelength of the scattered photon that can be observed?	(3marks)
(iii) Wl	hat is the Kinetic energy of the most energetic recoil electron and at what angle	does
it occur?		(4marks)
an electric f	experiment similar to Thompson's experiment, deflecting plates 7.0cm in length ield of $1.0 \times 10^4 \text{V/m}$. Without magnetic field, the angular deflection is 30° and the field of $8.0 \times 10^{-4} T$, there was no deflection. Calculate	
	(i) the initial velocity of the electron	(5marks)
	(ii) the ratio of charge to mass	(5marks)
Q3. (a) An 2	X-ray tube operates at 30 kV and the current through it is 2.0mA. Calculate:	
(i)	The electrical power input	(2marks)
(ii)	The number of electrons striking the target per second	(3marks)
(i)	The speed of the electrons when they hit the target and the lower wavelength of the X-rays emitted	(3marks)
state. If we a	ic hydrogen in its lowest energy state absorbs a photon, raising the electron to a assume the lifetime of an excited state is 10^{-10} s, and if we make rudimentary	nn n=3
•	that electrons orbit around the protons, How many revolutions does an excited ke before returning to the lower energy state?	(5marks)
CUEA/ACAI	D/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING	Page 2

(c) Tungsten target has a work function of 4.63eV. The electron acceleration voltage is What is the minimum wavelength of the X-rays produced? Why do we ignore the kinetic energy of the electrons from the filament and the work function of the filament are anode.	initial		
Q4. (a) In an experiment, its observed that backward scattered ($\theta \ge 90^{\circ}$) $\alpha - \dot{\epsilon}$ particles for That's energetic and directed at a gold foil as thin as 6.0×10^{-7} m. Assuming an α -Scatters from an electron in the foil, what is the maximum scattering angle?			
(b) Calculate the fraction per square mm area of 7.7MeV $\alpha - \dot{c}$ particle scattered at 45° foil of thickness $2.1 \times 10^{-7} m$ at a distance of 1.0cm from the target.	from a gold (6marks)		
(c) A spectrometer can resolve spectral in the visible region ($\lambda = 6000 \text{Å} \text{\&}$ when separate	ated by		
Δ_{λ} = 0.1 Å What will be the magnitude of the magnetic field required to confirm experimentally			
The normal Zeeman effect.	(8marks)		
Q5. (a) A photoemissive surface has a threshold wavelength of 0.65 μm . Calculate;			
(i) Its threshold frequency	(2marks)		
(ii) Its workfunction in electronvolts	(3marks)		
(iii) The maximum speed of the electrons emitted by violet light of wavelength $0.40 \ \mu m$.			
	(4marks)		
(b) X-rays of wavelength 2.4Å are Compton scattered and the scattered beams are observed	rved at 60°		
Relative to the incident beam. Find			
(i) The energy of the scattered X-ray photons(ii) The direction of travel of the scattered electrons	(5marks) (6marks)		

END