

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

REGULAR PROGRAMME

PHY 304: STATISTICAL MECHANICS 1

Date: DECEMBER 2021		Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions		

- Q1. a) Define the following terms
 - I. Thermodynamical system
- II. Ensemble
- III. Statistical weight
- IV. Entropy

b) (i State the fundamental postulate of equilibrium statistical mechanics	(2marks)
(ii) Differentiate between reversible and irreversible processes	(2marks)
c) Explain entropy with regards to statistical mechanics	(2marks)
ii) Describe an isolated system in statistical mechanics point of view	(4marks)
d) (i) Distinguish between macrostate and microstate	(2marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(4marks)

ii) Explain three types of ensembles.	(6marks)	
e) Outline properties of an ideal gas	(4 marks)	
Q2.a) State the equipartition theorem	(2marks)	
b) Explain the four statistical distribution types of particles	(8marks)	
b) State the postulate of equal a priori probabilities	(2marks)	
ii) Outline the three statistical distribution laws	(3marks)	
iii) Show that the equipartition energy is given by $U = \frac{1}{2}KT$	(5marks)	
Q3) iStart from the macrostate (N,V,E) of the given system Show that temperature can be written in terms of E,V and N from the statistical definition of entropy and the first law of thermodynamics (8marks)		
ii)Determine the number of all possible microstate accessible to the system, W(l	N,V,E). (3marks)	
b) State the three gas laws and hence derive the ideal gas law equation.	(6marks)	
Q4. a i) Differentiate between a fermon and a boson	(2marks)	
ii) Derive the statistical distribution counts	(8marks)	
ii) Outline the properties of an ensemble	(4marks)	
iii) Explain any three degrees of freedom	(6marks)	
END		

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards