

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

REGULAR PROGRAMME

PHY 302: ELECTROMAGNETISM

Date: DECEMBER 2021	Duration: 2 Hours		
INSTRUCTIONS: Answer Question ONE and any TWO Questions			

- Q1.
- (a) State:
 - i. Gauss's law for electrostatics
 - ii. Faraday's law
 - iii. Ampere's law
 - iv. Biot Savart law

	v. Two properties of equipotential surfaces	(10marks)
(b)	(i) By what power of distance does the strength of electric field fall off?	(2marks)
	(ii) How does this compare to a single point charge? Briefly explain a reason for	the difference
	between these two cases.	(2marks)
(c)	Show that $\tau = \mathbf{P} \mathbf{x} \mathbf{E}$ where the symbols have their usual meaning	(4marks)
(d)	Determine if the vector field $F(x, y) = (2xe^{xy} + x^2ye^{xy})i + (x^3e^{xy} + 2y)j$ is	conservative

(4marks)

(e) Consider a wire of radius *a* carrying a current of uniform current density J.

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(i) Determine the magnetic field of the wire both inside and outside the wire at a				
		distance $r > a$	(6marks)	
	(ii)	Draw a sketch graph of the relationship between the magnetic fie	ld strength and	
		the radius.	(2marks)	
Q2.				
(a)	State			
	(i)	Earnshaw's theorem	(2marks)	
	(ii)	Laplace's and Poisson's equations	(4marks)	
(b) S	tarting f	rom Gauss' law, derive the Poisson's equation	(4marks)	
(c)	State	the physical significance of		
(i)) Di	ivergence	(2marks)	
(ii) Ci	url	(2marks)	
(d) Fi	nd ∇.V	$7 xF$ for $F = y z^2 i + xyj + yzk$	(6marks)	
Q3.				
(a) (i) Define the term Vector potential (2marks)				
(ii)	Obtain	an expression for the vector potential of a solenoid	(8marks)	
(b) (i)	(b) (i) Define the term "Electric field" (2marks)			
(ii)	State S	Stoke's theorem	(2marks)	
(ii	i) SI	how that Faraday's law can be expressed as $xE = \frac{-dB}{dt}$		
(6marks)				
Q4.				
(a) Define				
(i) Electric flux density (D) (2marks)				
(ii) Pe	(ii) Permittivity (ϵ) (2marks)			
(()	

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(iii) Dipole moment (F	P)		(2marks)
(b) Name four differences between Polar and Non - Polar molecules (4mark			
(c) (i) explain the term electronic polarization			(2marks)
(ii) Show that	$\mu_e = \alpha_e E$	where $\alpha_e = 4 \pi \varepsilon_o R^3$ is the electronic polarization	n (4marks)

(d) Explain the term "conservative field" and name two conservative fields (4marks)

Q5.

(a) State (i) Ampere's law

	(1)	Amperesiaw		(ZIIIdi KS)	
	(ii)	The divergence theorem		(2marks)	
	(iii)	Stoke's theorem		(2marks)	
(b) Show that Ampere's law can be written as $\nabla x H = J$ where the symbols have their usual					
	meaning			(6marks)	
(c) Using Biot - Savert law, derive an expression for the magnetic field strength at a point					
on the axis of a circular loop of a wire of radius a carrying a current I as a function of the					
	distance x	measured along the axis from	m the center of the circle.	(8marks)	

(2marke)

ISO 9001:2015 Certified by the Kenya Bureau of Standards

END