THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A
MAIN EXAMINATION

P.O. Box 62157

00200 Nairobi - KENYA
Telephone: 891601-6

Ext 1022/23/25
SEPTEMBER -DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES
REGULAR PROGRAMME

PHY 103: THERMODYNAMICS 1

Date: DECEMBER 2021
 Duration: 2 Hours

INSTRUCTIONS: Answer Question ONE and any TWO Questions
You may use the following constants where applicable
Universal gas constant, $\mathrm{R}=8.314 \mathrm{JK}^{-1}(\mathrm{~mol})^{-1}$
Avogadro's constant $\mathrm{N}_{\mathrm{o}}=6.023 \times 10^{23}(\mathrm{~mol})^{-1}$
Plank's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
One atmosphere (1 atm) $=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
Boltzmann constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Stefan-Boltzmann constant, $\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
Latent heat of fusion of water $=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Latent heat of vaporization of water $=2.256 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Specific heat capacity of water $=4190 \mathrm{~J}\left(\mathrm{~kg}^{\circ} \mathrm{C}\right)$
$1 \mathrm{kcal}=4186$ Joules

Q1.
a) What is thermodynamics
(1 mark)
b) State and describe the two classes of thermodynamics
c) An ideal gas at constant temperature T undergoes an isothermal an isothermal expansion in which its volume changes from v1 to v2. How much work does the gas do?
d) State the following laws
i). First law of thermodynamics
ii). Zeroth law of thermodynamics
e) An ideal gas of volume 0.3 cm 3 at a temperature of $0^{\circ} \mathrm{C}$ and standard pressure expands reversibly to three times its volume at constant pressure. Calculate the work done in this process.
marks)
f) Calculate the change in volume of an aluminium rectangular bar of dimensions $20 \mathrm{~mm} \times 40 \mathrm{~mm} \times 60 \mathrm{~mm}$ when it is heated from 0 to 100 oC . Take the coefficient of linear expansivity for aluminium to be $\alpha=12 \times 10^{-6} / o_{C}$. (5 marks)
g) An approximate equation of state of a real gas at moderate pressure, devised to take into account the finite size of molecules is $P(V-b)=R \theta$, where b is a constant. Show that;
i). $\beta=\frac{\frac{1}{\theta}}{1+\frac{P B}{R \theta}}$
(5marks)
ii). $k=\frac{\frac{1}{P}}{1+\frac{P B}{R \theta}}$
(4 marks)
$\beta \wedge k$ are the volume expansivity \wedge isothermal compresibility respectively

Q2.
a) Show that the work done in compressing an ideal gas is given as
(5 marks)

$$
W=n R T \ln \frac{V_{2}}{V_{1}}
$$

b) How much work is required to compress isothermally 4 g of oxygen initialy at a pressure of $10^{5} \mathrm{~N} / \mathrm{m}^{2}$ to half its original volume? Assume an ideal gas
(5 marks)
c) By employing molecular interpretation, describe how temperature affect pressure at constant volume.
(4 marks)
d) A system gains 300J of heat energy, while the internal energy of the system increases by 9000 J and the volume decreases by $0.010 \mathrm{~m}^{3}$. Assuming the pressure is constant, determine its value.
(6 marks)
Q3.
a) Differentiate the following terms as used in thermodynamics
i). Heat capacity and specific heat capacity
ii). Latent heat of fusion and latent heat of vaporization
b) 20 g ice, initially at $-20^{\circ} \mathrm{C}$ is heated to become water vapor at $100{ }^{\circ} \mathrm{C}$. Calculate the amount of heat used in this process.
marks)
c) A substance of mass M1, specific heat C 1 and temperature T 1 is mixed with a second substance of mass M2, specific heat C2 and initial temperature T2. Derive an expression for the final temperature T of the system after the equilibrium is established.
(6 marks)

Q4.
a) Consider a thermodynamic state f which is a function of pressure, P temperature θ and volume V . Show that the change in pressure for the system is given as;
(15 marks)

$$
P_{f}-P_{i}=\frac{\beta}{\kappa} \int_{\theta_{1}}^{\theta_{2}} d \theta
$$

$\beta \wedge k$ are the volume expansivity \wedge isothermal compresibility respectively
b) A mass of mercury is at STP. Determine final temperature if the temperature is raised to $20^{\circ} \mathrm{C}$ at constant volume. Take $\beta=1.81 \times 10^{-4} \mathrm{~K}^{-1}$ and $\kappa=3.82 \times 10^{-11}$ Pa^{-1} for mercury.
(5 marks)
Q5.
a) What is linear expansion
(1 mark)
b) Show that the coefficient of volume expansivity is given by three times the coefficient of linear expansivity.
c) An automobile has a 45 -liter tank steel tank. The tank is filled with gasoline at $14^{\circ} \mathrm{C}$ from an underground storage tank. If the automobile is then parked in a warm place until the tank temperature is $38^{\circ} \mathrm{C}$, how much gasoline will spill out of the automobile tank? $\left(\right.$ Take $\alpha_{\text {steel }}=1.2 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ and $\left.\gamma_{\text {gasoline }}=9.5 \times 10^{-40} \mathrm{C}^{-1}\right)$
(5 marks)
a) An instrument records temperature of a body as $68^{\circ} \mathrm{F}$. What value would another instrument calibrated in Kelvin give for the same temperature.
(4 marks)
d) Show that for a hydrostatic system, the change in pressure is given by;
(5 marks)

$$
d P=\frac{\beta}{\kappa} d \theta-\frac{1}{\kappa V} d V
$$

β, k, θ, V are the volume expansivity, isothermal compresibility, temperature $\wedge i$ volume respectively
END

