

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

REGULAR PROGRAMME

PHY 103: THERMODYNAMICS 1

Date: DECEMBER 2021			Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions			

You may use the following constants where applicable

Universal gas constant, R = 8.314 JK⁻¹(mol)⁻¹ Avogadro's constant N_o = 6.023 x 10^{23} (mol)⁻¹ Plank's constant, h = 6.626 x 10^{-34} J.s One atmosphere (1 atm) = 1.013 x 10^5 N/m² Boltzmann constant, k = 1.38 x 10^{-23} J/K Stefan-Boltzmann constant, σ = 5.67 x 10^{-8} Wm⁻²K⁻⁴ Latent heat of fusion of water = 3.34 x 10^5 J/kg Latent heat of vaporization of water = 2.256 x 10^6 J/kg Specific heat capacity of water = 4190 J(kg°C) 1 kcal = 4186 Joules

Q1.

a) What is thermodynamics	(1 mark)
b) State and describe the two classes of thermodynar	nics (4 marks)
c) An ideal gas at constant temperature T undergoe	s an isothermal an isothermal
expansion in which its volume changes from v1 to	v2. How much work does the
gas do?	(4 marks)
d) State the following laws	
i). First law of thermodynamics	(1 mark)
ii). Zeroth law of thermodynamics	(1 mark)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

ISO 9001:2015 Certified by the Kenya Bureau of Standards

e) An ideal gas of volume 0.3 cm3 at a temperature of 0°c and standard pressure expands reversibly to three times its volume at constant pressure. Calculate the work done in this process.

marks)

- f) Calculate the change in volume of an aluminium rectangular bar of dimensions 20mm x 40 mm x 60 mm when it is heated from 0 to 100 oC. Take the coefficient of linear expansivity for aluminium to be $\alpha = 12 \times 10^{-6} / o_C$. (5 marks)
- g) An approximate equation of state of a real gas at moderate pressure, devised to take into account the finite size of molecules is P(V-b) = Rθ, where b is a constant. Show that;

i).
$$\beta = \frac{\frac{1}{\theta}}{1 + \frac{PB}{R\theta}}$$
 (5marks)
ii).
$$k = \frac{\frac{1}{P}}{1 + \frac{PB}{R\theta}}$$
 (4 marks)

 $\beta \wedge k$ are the volume expansivity \wedge isothermal compressibility respectively

Q2.

a) Show that the work done in compressing an ideal gas is given as (5 marks)

$$W = nRT ln \frac{V_2}{V_1}$$

b) How much work is required to compress isothermally 4g of oxygen initialy at a pressure of 10⁵ N/m² to half its original volume? Assume an ideal gas

(5 marks)

(5

- c) By employing molecular interpretation, describe how temperature affect pressure at constant volume. (4 marks)
- d) A system gains 300J of heat energy, while the internal energy of the system increases by 9000J and the volume decreases by 0.010 m³. Assuming the pressure is constant, determine its value. (6 marks)

Q3.

- a) Differentiate the following terms as used in thermodynamics (4 marks)
 - i). Heat capacity and specific heat capacity
 - ii). Latent heat of fusion and latent heat of vaporization
- b) 20g ice, initially at -20°C is heated to become water vapor at 100 °C. Calculate the amount of heat used in this process.

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

ISO 9001:2015 Certified by the Kenya Bureau of Standards

marks)

 c) A substance of mass M1, specific heat C1 and temperature T1 is mixed with a second substance of mass M2, specific heat C2 and initial temperature T2. Derive an expression for the final temperature T of the system after the equilibrium is established.

Q4.

a) Consider a thermodynamic state f which is a function of pressure, P temperature θ and volume V. Show that the change in pressure for the system is given as; (15 marks)

$$P_f - P_i = \frac{\beta}{\kappa} \int_{\theta_1}^{\theta_2} d\theta$$

 $\beta \wedge k$ are the volume expansivity \wedge isothermal compressibility respectively

b) A mass of mercury is at STP. Determine final temperature if the temperature is raised to 20° C at constant volume. Take $\beta = 1.81 \times 10^{-4}$ K⁻¹ and $\kappa = 3.82 \times 10^{-11}$ Pa⁻¹ for mercury. (5 marks)

Q5.

- a) What is linear expansion
- b) Show that the coefficient of volume expansivity is given by three times the coefficient of linear expansivity. (5 marks)
- c) An automobile has a 45-liter tank steel tank. The tank is filled with gasoline at 14°C from an underground storage tank. If the automobile is then parked in a warm place until the tank temperature is 38 °C, how much gasoline will spill out of the automobile tank? (Take $\alpha_{steel} = 1.2 \times 10^{-6}$ °C⁻¹ and $\gamma_{gasoline} = 9.5 \times 10^{-40}$ C⁻¹)

(5 marks)

a) An instrument records temperature of a body as 68°F. What value would another instrument calibrated in Kelvin give for the same temperature.

(4 marks)

d) Show that for a hydrostatic system, the change in pressure is given by;

(5 marks)

$$dP = \frac{\beta}{\kappa} d\theta - \frac{1}{\kappa V} dV$$

 β , k, θ , V are the volume expansivity, isothermal compresibility, temperature $\land i$ volume respectively

ISO 9001:2015 Certified by the Kenya Bureau of Standards

(1 mark)

ISO 9001:2015 Certified by the Kenya Bureau of Standards

OTE OF DE

END