
i) Define temperature and give any two units for it.
(2 Marks)
j) A perfect gas at a pressure of 58 bar and a temperature of 450 K has a density of $50 \mathrm{~kg} / \mathrm{m}^{3}$. The ratio of specific heats y is 1.48 . Calculate the change in specific entropy of the gas if the pressure is raised to 100 bar and the temperature is lowered to 400 K .
(4 Marks)

Q2. a) A mixture of 1.78 kg of water and 262 g of ice at $0^{\circ} \mathrm{C}$ is, in a reversible process, brought to a final equilibrium state where the water/ice ratio, by mass is $1: 1$ at $0^{\circ} \mathrm{C}$,
i) Calculate the entropy change of the system during this process.
(6 Marks)
ii) The system is then returned to the first equilibrium state, but in an irreversible way (by using a Bunsen burner, for instance). Calculate the entropy change of the system during this process.
(6 Marks)
iii) Show that your answer is consistent with the second law of thermodynamics.
(3 Marks)
b) Consider a system enclosed in a cylinder oriented along the x -axis, with a moveable piston of contact area A at one end as shown in the diagram below:

Required:
i) Draw a PV diagram to depict the scenario when a force F is applied on the system.
(2 Marks)
ii) Show that the work done for this system is given by the expression:

$$
W=P A \Delta x=-P \Delta V
$$

Marks)

Q3. a) Define Enthalpy and show how its formula can be given in terms of Heat energy.
(4 Marks)
b) Derive the expression for the Internal energy for the following processes for an ideal gas:
i) Isothermal process
ii) Adiabatic process
c) Show that for an ideal gas, the internal energy is given by the equation

$$
U=\frac{3}{2} N k T
$$

Where N is the number of particles. K is the Boltzmann constant and T is temperature.
(6 Marks)
Q4. a) State the four Thermodynamic Potentials.
b) A perfectly insulated, rigid tank with a volume of $0.2 \mathrm{~m}^{3}$ contains a perfect gas which has a molar mass of $18 \mathrm{~kg} / \mathrm{mol}$ and a ration of specific heats of 1.45. Initially the pressure and temperature in the tank are 9 bar and 320 K respectively. A fan inside the tank is spun at $3600 \mathrm{rev} / \mathrm{min}$ for 20 seconds. The torque required to turn the fan is 30 Nm . Calculate the R, c_{p} and c_{v} values of the gas and the mass of gas in the tank.
(6 Marks)
c) Consider two Engines A and B as shown below.Engine A, compared to engine B, produces, per cycle, five times the work but receives three times the heat input and exhausts out twice the heat.

Required: Determine the efficiency of each engine.
(10 Marks)
Q5. a) An ideal gas undergoes an isothermal expansion at $77^{\circ} \mathrm{C}$ increasing its volume from 1.3 to 3.4 L . The entropy change of the gas is $24 \mathrm{~J} / \mathrm{K}$. Show how many moles of gas are present.
(5 Marks)

Cuea/ACD/EXM/JANUARY -APRIL 2019 /PHYSICSPage 3
b) Consider a steady flow process in which a fluid is flowing steadily without friction, but with heat flow into the fluid and a change in elevation and changes in volume and pressure and some stirring as shown in the diagram below:

Required:
Show the expression for the total energy of the system
c) To make some ice, a freezer extracts 185 kJ of heat at $-12.0^{\circ} \mathrm{C}$. The freezer has a coefficient of performance of 5.70 . The room temperature is $26.0^{\circ} \mathrm{C}$.
i) Calculate the amount of heat delivered to the room
ii) Find how much work is required to run the freezer
END

