THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6

--- -- -----

JANUARY – APRIL 2019 TRIMESTER

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS

REGULAR PROGRAMME

PHY 307: PHYSICAL ELECTRONICS

Date: APRIL 2019Duration: 2 HoursINSTRUCTIONS: Answer Question ONE and any other Two Questions

Electron charge q =1.6 $X \, 10^{-19} C$ Mobility of electron in silicon $\mu_e = 0.145 \, m^2 / \iota \, \text{V.s}$ Mobility of holes in silicon $\mu_p = 0.05 \, m^2 / \iota \, \text{V.s}$ Mobility of electrons in Germanium $\mu_e = 0.38 \, m^2 / \iota \, \text{V.s}$ Mobility of holes in Germanium $\mu_p = 0.18 \, m^2 / \iota \, \text{V.s}$ Boltzmann constant $k = 1.38 \, X \, 10^{-23} \, J / \iota \, \text{K}$

Q1 a) i) State the mass action law (1mark) ii) Determine the intrinsic carrier density of Germanium at 300K (2marks) b) Distinguish between the following terms

- i) Recombination and Generation of charge carriers (2marks)
 - ii) Diffuse and Drift currents (2marks)

c) Define the following terms

 Negative temperature coefficient 	(1 mark)
ii) Doping	(1mark)
iii) Mean lifetime	(1mark)
iv) Acceptor ion	(1mark)

d) i) Calculate the resistivity of an intrinsic Germanium at 300K (3marks)

Cuea/ACD/EXM/JANUARY - APRIL 2019 / PHYSICSPage 1

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- ii) Write a mathematical definition of the 'volt equivalence of temperature'. Hence determine its value at 27°C (2marks)
- e) i) Distinguish between forward and reverse biasing of a P-N junction (2marks)
 - ii) Calculate the Barrier potential at room temperature (300K) for a P-N junction In silicon which is doped to a carrier density of 10²¹m⁻³ on the P side and 10²²m⁻³ on the N- side. The intrinsic carrier density for silicon is 1.4 x 10¹⁶m⁻³. (3marks)
- f) Determine the Germanium PN junction diode current for a forward bias voltage of 0.22V at room temperature 25°C with reverse saturation current of 1mA.Take η = 1 (3marks)
- g) i) State three applications of semi-conductor diodes in modern electronic Circuitry. (3marks)
 - ii) Using the approximate Boltzmann's diode equation, find the change in Forward bias for doubling the forward current of a Germanium Semiconductor at 290K (3marks)
- Q2. a) A copper wire of 2mm diameter with conductivity of 5.8 x 10⁷ S/m and electron mobility (μi of 0.0032m²/V-s is subjected to an electric field of 20mV/m. Find

i)	The charge density of the free electron	(2 marks)
ii)	The current density	(2 marks)
iii)	The current flowing in the wire	(3 marks)
iv)	The electron drift velocity	(1 mark)

- b) A conduction wire has resistivity of 1.54 x 10⁻⁸Ω-m at room temperature. There are 5.8 x 10²⁸ Conduction electrons per m³. Calculate the mobility of the electrons (5marks)
- c) Find the intrinsic carrier concentration of silicon at 300K for which N =3 x10²⁵ m⁻³, E_g = 1.1eV μ_e =0.145m²/V-s and μ_p = 0.05m²/V-s. Also find the conductivity of silicon. (5 marks)
- Q3. a) A germanium diode has a saturation current of 10 µA at room temperature (300K). Find the Saturation current at 400K (4marks)
 - b) The current flowing in a certain P-N junction diode at room temperature is 2 x 10⁻⁷A,When a large reverse voltage is applied. Calculate the current flowing when 0.1V forward Bias is applied at room temperature. (6 marks)

Cuea/ACD/EXM/JANUARY – APRIL 2019 / PHYSICSPage 2

ISO 9001:2008 Certified by the Kenya Bureau of Standards

- c) Sketch the characteristic curve of a p-n junction diode and explain its shape? (6marks)
- d) The current- voltage characteristic of a p-n junction diode is given by the relatio I = I_o ($e^{\frac{qv}{\eta kT}}$ 1) the diode current is 0.5mA at V = 440mV. Determine the value of η . Assume kT/q =25mV. (4marks)
- Q4. a) From the Fermi- Dirac probability distribution function, show that for an intrinsic Semiconductor, the Fermi level lie midway between the conduction band and the Valence band. (10marks)
 - b) An intrinsic semi conductor (silicon) has 5 x 10²⁸ atoms/m³ at 20°C room temperature. At this temperature, there are 1.5 x 10¹⁶ electron- hole pairs. Find the conductivity of silicon at 20 °C. If the above material is doped with indium atoms at the rate of 1 atom per 10⁷ silicon atoms. Find the conductivity of the doped material at room temperature. If the conductivity increases at the rate of 5% per °C then find the conductivity of silicon at 34°C also. (10marks)
- Q5. a) Derive an expression for the Barrier potential, VB in terms of the impurity densities causing it. (8marks)
 - b) An npn transistor in a CE mode is used as a simple voltage amplifier with a collector current of 4mA. The terminal of an 8V battery is connected to the collector through a load resistance R_L

and to the base through a resistor R_{B} . The collector – emitter voltage V_{CE} = 4V, Base- emitter voltage V_{BE} = 0.6V and the base current amplification factor β = 100.

- i) Draw the physical representations and the schematic symbols for an npn transistor (2marks)
- ii) Determine the value of R_L and R_B (10marks)

END

Cuea/ACD/EXM/JANUARY - APRIL 2019 / PHYSICSPage 3