

Q1.a) Given the Chebyshev polynomial of the first kind $T_{n}(x)=\cos \left(n \cos ^{-1}(x)\right)=\cos (n \theta)$ where $\theta=\cos ^{-1}(x)$, prove that

b). Using Chebyshev polynomials, obtain the least square approximation of the second degree for the function $f(x)=x^{4}$ on the interval $[-1,1]$.

Q2. a) Determine a unique Lagrange polynomial of degree 2 or less such that
$f(1.0)=14.2, f(2.7)=17.8$ and $f(3.2)=22.0$, hence using your
polynomial approximate the value of $f(2.5)$.
(7marks)
b). Discuss the theory of Hermite interpolation, hence given the data below

x	$f(x)$	$f^{\prime}(x)$
-1	1	-5
0	1	1
1	3	7

using the data above approximate the value of ${ }^{f(0.5)}$ using Hermite interpolation of degree five, $H_{5}(x)$.

Q3.a) Given the following values of a function ${ }^{f}$ of the variable ${ }^{t}$

t	0.1	0.2	0.3	0.4
$f(t)$	0.76	0.58	0.44	0.35

Obtain a least square fit of the form $f(t)=a e^{-3 t}+b e^{-2 t}$.
(8marks)
b). Obtain a cubic spline approximation for the function given in tabular form as

x	0	1	2	3
$f(x)$	1	2	33	244

and $m_{0}=0, \quad m_{3}=0$ on the interval ${ }^{[0,1]}$ hence approximate ${ }^{f(0.5)}$. (9marks)
c). Given that $\left(x_{0}, f_{0}\right)$ and $\left(x_{1}, f_{1}\right)$ are two adjacent tabulated points, show that the linear Lagrange interpolating polynomial of $f(x)$ is given by

$$
P(x)=\frac{x-x_{1}}{x_{0}-x_{1}} f_{0}+\frac{x-x_{0}}{x_{1}-x_{0}} f_{1}
$$

Hence if $\sin (0.4)=0.38942$ and $\sin (0.5)=0.47943$ approximate the value of $\sin (0.45)$.
(6marks)

Q4. a) Using Gram-Schmidt orthogonalization process, compute the first three polynomial $p_{0}(x), p_{1}(x), p_{2}(x)$ which are orthogonal on ${ }^{[0,1]}$ with respect to the weight function $w(x)=1$. Hence using these polynomials obtain least square approximation of second degree for $f(x)=x^{\frac{1}{2}}$ on ${ }^{[0,1]}$.
(15marks)
b). Obtain a linear polynomial approximation to the function $f(x)=x^{3}$ on the interval $[0,1]$ using least square approximation with $w(x)=1 . \quad$ (8marks)

Q5.a) A square matrix of order ${ }^{3}$ has ${ }^{3}$ linearly independent eigenvectors, show that a matrix P can be found such that $P^{-1} A P=D$ where D is a diagonal matrix.
(6marks)
b). Determine a matrix P which diagonalizes.
$A=\left(\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right)$
(13marks)
c). Use the Cayley-Hamilton theorem to find A^{-1} given $A=\left(\begin{array}{ll}4 & 2 \\ 1 & 1\end{array}\right)$. (4marks)
END

