

Q1.
a) Suppose that three random variables ${ }^{X_{1}},{ }^{X_{2}}$ and ${ }^{X_{3}}$ have a continuous density function given by

$$
f\left(x_{1} x_{2}, x_{3}\right)=\left\{\begin{array}{l}
c\left(x_{1}+2 x_{2}+3 x_{3}\right), 0<x_{1}<1, i=1,2,3 \\
0, \text { elsewhere }
\end{array}\right.
$$

Determine:
i. The constant ${ }^{C}$
ii. The marginal p.d.f of ${ }^{X_{1}}$ and X_{2}
iii. $\operatorname{Pr}\left(x_{3}<\frac{1}{2} / x_{1}=\frac{1}{4}, x_{2}=\frac{3}{4}\right)$
(6 marks)
b) Show that $\Sigma=\operatorname{Var}(\underline{X})=\mathrm{E}\left(\underline{X}_{\underline{X}}{ }^{T}\right)-\mu \underline{\mu}^{T}$
(4marks)
c) Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a population with mean ${ }^{\mu}$ and variance σ^{2}. Let $Q=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$ where $\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}$. Show that $E(Q)=(n-1) \sigma^{2}$.
(5marks)
d) Suppose that $\underline{X} N_{p}(\underline{\mu}, \Sigma), \Sigma>0$. Let $Q=(\underline{X}-\underline{\mu})^{T} \Sigma^{-1}(\underline{X}-\underline{\mu})$. Show that $Q \square \chi^{2}(p)$

(5marks)

e) Let $\frac{X}{-}$ be such that $\quad\left(\begin{array}{l}3\end{array}\right)$ and $\quad\left(\begin{array}{lll}1 & 1 & 4\end{array}\right)$

Find $\mathrm{E}\left(X_{1}^{2}+2 X_{2}{ }^{2}+3 X_{3}^{2}+3 X_{1} X_{2}+4 X_{1} X_{3}\right)$
(5marks)
f) Suppose $\underline{X}=\left(X_{1}, X_{2}, X_{3}\right)^{T}$ is a random vector with mean $\underline{\mu}=\left(\mu_{1}, \mu_{2}, \mu_{3}\right)^{T}$ and $\operatorname{Var}(\underline{X})=\left(\begin{array}{ccc}1 & \rho & \rho^{2} \\ \rho & 1 & 0 \\ \rho^{2} & 0 & 1\end{array}\right)$. Find $\operatorname{Var} \cdot\left[\binom{X_{1}}{X_{3}} / X_{2}\right]$

Q2.
a) The covariance matrix corresponding to scaled (standardized) variables ${ }^{x_{1}, x_{2}}$ is

$$
\Sigma=\left[\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right]
$$

Compute the Principal components explaining respectively $\frac{100(1+\rho)}{2} \%$ and $\frac{100(1-\rho)}{2} \%$ of the total variation.
(7marks)
b) Let X be a ${ }^{p-\text { variate }}$ random vector with mean ${ }^{\mu}$ and variance-covariance matrix $\Sigma=\left(\left|\sigma_{n j}\right|\right) ; i, j=1,2, \ldots, p$. Show that $\mathrm{E}\left(X^{\prime} A X\right)=\operatorname{tr}(A \Sigma)+\mu^{\prime} A \mu$ where A is a $p \times p$ symmetric matrix of constants
c) Let ${ }^{X_{1}}$ and ${ }^{X_{2}}$ be jointly distributed random variables with means $\mu_{1}=\mu_{2}=0$ and variances $\sigma_{1}{ }^{2}=2, \sigma_{2}{ }^{2}=3$ and correlation $\rho=0.6$. Find the correlation between the linear functions $Y=4 X_{1}+5 X_{2}$ and $Z=3 X_{1}+2 X_{2}$.

(6marks)

Q3.
a) Let $\frac{X}{}$ denote a 3 -variate random vector with
 $v_{1}=X_{1}+X_{2}+2 X_{3}$ and $v_{2}=X_{1}+4 X_{3}$. Determine
(i) $\operatorname{Var}(\underline{V})$
(4marks)
(ii) Corr.
(2marks)
b) Let $X_{1}, X_{2}, \ldots, X_{n}$ be ${ }^{\text {i.i.d }}$ random variables with mean ${ }^{\mu}$ and variance σ^{2}.

Let $Q(\underline{X})=\left(X_{1}-X_{2}\right)^{2}+\left(X_{2}-X_{3}\right)^{2}+\ldots+\left(X_{n-1}-X_{n}\right)^{2}$.
Show that $\mathrm{E}(Q)=2(n-1) \sigma^{2}$ and $\frac{Q}{2(n-1)}$ is an unbiased estimator of σ^{2}
c) Let $\underline{Y} \square N_{p}(\underline{\mu}, \Sigma\rangle$. Let $\underline{Y}^{T}=\left(\underline{Y}_{1}, \underline{Y}_{2}\right)$ where \underline{Y}_{1} and \underline{Y}_{2} are $r \times 1$ and $s \times 1,(r+s=p)$ random vectors.
i. Determine the distribution of \underline{Y}_{1} and \underline{Y}_{2}
(4marks)
ii. Show that ${ }_{Y} \square N\left[\mu_{i}, \sigma_{i j}\right] ; i=1,2, \ldots, p$, where ${ }^{Y}$ is the ${ }^{i^{\prime / h}}$ component of \underline{Y},

$$
\mu_{i}=E\left(Y_{i}\right) \text { and } \Sigma=\left(\sigma_{u j}\right) .
$$

(4marks)

Q4.
a) Let $\frac{X}{}$ be a ${ }^{3 \times 1}$ random vector with Variance-covariance matrix, $\quad\left[\begin{array}{lll}3 & 0 & 2\end{array}\right]$. Find
i. The variance of $Z=X_{1}-2 X_{2}+X_{3}$
ii. The Variance - covariance matrix of the random vector $\underline{Y}=\left\langle Y_{1}, Y_{2}\right\rangle^{T}$ where $Y_{1}=X_{1}+X_{2}$ and $^{Y_{2}}=X_{1}+X_{2}+X_{3}$
(6marks)
b) Let $X_{i} ; i=1,2, \ldots, n$ be $i i d$ random vectors from ${ }^{N_{p}}[\mu, \Sigma]$. Given that $\frac{\bar{X}}{-}$ and S are M.L.E's of ${ }^{\mu}$ and ${ }^{\Sigma}$ respectively.
(i) Write down the typical elements of the vector $\frac{\bar{X}}{}$ and matrix S. (2marks)
(ii) Give the expression for the Hotelling T^{2} statistic and explain how you use it to test the hypotheses $H_{0}: \mu=\mu_{0}$ v/s $H_{\mathrm{r}}: \mu \neq \mu_{0}$
(7marks)

Q5.
a) Suppose that $y_{\text {is }} N_{4}[\mu, \Sigma]$ where

$$
\mu=\left(\begin{array}{c}
1 \\
2 \\
3 \\
-2
\end{array}\right) \quad \sum=\left(\begin{array}{cccc}
4 & 2 & -1 & 2 \\
2 & 6 & 3 & -2 \\
-1 & 3 & 5 & -4 \\
2 & -2 & -4 & 4
\end{array}\right)
$$

Find
(i) the joint marginal distribution of ${ }^{y_{1}}$ and ${ }^{y_{3}}$
(3marks)
(5marks)
b) Suppose that $\underline{X}=\left(X_{1}, X_{2}, X_{3}\right)$ has the 3-variate normal distribution with density

$$
\begin{aligned}
& f(\underline{x})=c \exp \cdot\left(-\frac{1}{2} Q\right) \text { where } \\
& Q=\frac{1}{17}\left(11 x_{1}^{2}+7 x_{2}^{2}+5 x_{3}^{2}-6 x_{1} x_{2}-4 x_{1} x_{3}-2 x_{2} x_{3}+2 x_{1}-16 x_{2}-22 x_{3}+18\right) .
\end{aligned}
$$

i. Identify $\underline{\mu}$ and ${ }^{\Sigma}$. Hence find ${ }^{c}$.
(7marks)
ii. Determine the distribution of Q and hence find ${ }^{k}$ such that $\operatorname{Pr} .(Q>k)=0.05$
(5marks)
END

