

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA

A. M. E. C. E. A

MAIN EXAMINATION

P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Ext 1022/23/25

SEPTEMBER – DECEMBER 2021

FACULTY OF SCIENCE

DEPARTMENT OF MATHEMATICS

REGULAR PROGRAMME

MAT 467: MULTIVARIATE ANALYSIS

Date: DECEMBER 2021		Duration: 2 Hours
INSTRUCTIONS: Answer Question ONE and any TWO Questions		

Q1.

a) Suppose that three random variables X_1 , X_2 and X_3 have a continuous density function given by

$$f(x_1, x_2, x_3) = \begin{cases} c(x_1 + 2x_2 + 3x_3), 0 < x_i < 1, i = 1, 2, 3\\ 0, elsewhere \end{cases}$$

Determine:

i. The constant ^C

ii. The marginal p.d.f of X_1 and X_2 $Pr\left(x_3 < \frac{1}{2} / x_1 = \frac{1}{4}, x_2 = \frac{3}{4}\right)$ iii.

b) Show that
$$\Sigma = Var(\underline{X}) = E(\underline{X}\underline{X}^T) - \underline{\mu}\underline{\mu}^T$$

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 1

(6 marks)

(4marks)

c) Suppose that $X_1, X_2, ..., X_n$ is a random sample from a population with mean μ and

variance
$$\sigma^2$$
. Let $Q = \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$ where $\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$. Show that $E(Q) = (n-1)\sigma^2$.
(5marks)

d) Suppose that $\frac{X \Box N_p(\underline{\mu}, \Sigma)}{Q \Box \chi^2(p)}$, $\Sigma > 0$. Let $Q = (\underline{X} - \underline{\mu})^T \Sigma^{-1} (\underline{X} - \underline{\mu})$. Show that

(5marks)

$$E(\underline{X}) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} Var(\underline{X}) = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 4 \end{pmatrix}$$

e) Let \underline{X} be such that
Find $E(X_1^2 + 2X_2^2 + 3X_3^2 + 3X_1X_2 + 4X_1X_3)$ (5marks)

f) Suppose
$$\underline{X} = (X_1, X_2, X_3)^T$$
 is a random vector with mean $\underline{\mu} = (\mu_1, \mu_2, \mu_3)^T$ and
 $Var(\underline{X}) = \begin{pmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & 0 \\ \rho^2 & 0 & 1 \end{pmatrix}$. Find $Var.\left[\begin{pmatrix} X_1 \\ X_3 \end{pmatrix}/X_2 \right]$ (5marks)

Q2.

a) The covariance matrix corresponding to scaled (standardized) variables x_1, x_2 is $\begin{bmatrix} 1 & \rho \end{bmatrix}$

$$\Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$$

Compute the Principal components explaining respectively $\frac{100(1+\rho)}{2}$ % and $\frac{100(1-\rho)}{2}$ % of the total variation. (7m

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 2

(7marks)

- b) Let X be a p variate random vector with mean μ and variance-covariance matrix $\Sigma = (\langle \sigma_{\eta} \rangle); i, j = 1, 2, ..., p$. Show that $E(X'AX) = tr(A\Sigma) + \mu'A\mu$ where A is a $p \times p$ symmetric matrix of constants (7marks)
- c) Let X_1 and X_2 be jointly distributed random variables with means $\mu_1 = \mu_2 = 0$ and variances $\sigma_1^2 = 2$, $\sigma_2^2 = 3$ and correlation $\rho = 0.6$. Find the correlation between the linear functions $Y = 4X_1 + 5X_2$ and $Z = 3X_1 + 2X_2$.

(6marks)

a) Let $\frac{X}{2}$ denote a 3-variate random vector with $Var(\underline{X}) = \begin{bmatrix} 5 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Let $\underline{V} = \begin{pmatrix} v_2 \\ v_1 \end{pmatrix}$ where $v_1 = X_1 + X_2 + 2X_3$ and $v_2 = X_1 + 4X_3$. Determine (i) $Var(\underline{V})$ (ii) Corr. (v_1, v_2) (4marks) (2marks) b) Let X_1, X_2, \dots, X_n be *i.i.d* random variables with mean μ and variance σ^2 . Let $Q(\underline{X}) = (X_1 - X_2)^2 + (X_2 - X_3)^2 + \dots + (X_{n-1} - X_n)^2$. Show that $E(Q) = 2(n-1)\sigma^2$ and $\frac{Q}{2(n-1)}$ is an unbiased estimator of σ^2 (6marks) c) Let $\underline{\underline{Y}} \square N_p(\underline{\mu}, \underline{\Sigma})$. Let $\underline{\underline{Y}}^T = (\underline{Y}_1, \underline{Y}_2)$ where $\underline{\underline{Y}}_1$ and $\underline{\underline{Y}}_2$ are $r \times 1$ and $s \times 1$, (r+s=p)random vectors. Determine the distribution of $\frac{Y_{-1}}{2}$ and $\frac{Y_{-2}}{2}$ i. (4marks) Show that $Y_i \square N[\mu_i, \sigma_{ii}]$; i = 1, 2, ..., p, where Y_i is the i^{ih} component of \underline{Y}_i , ii. $\mu_i = E(Y_i)$ and $\Sigma = (\sigma_{ij})$ (4marks)

CUEA/ACAD/EXAMINATIONS/DIRECTORATE OF EXAMINATIONS & TIMETABLING

Page 3

- a) Let $\frac{X}{2}$ be a 3×1 random vector with *Variance* cov*ariance* matrix, $\sum_{i=1}^{n} \begin{bmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 2 \end{bmatrix}$. Find
 - i. The variance of $Z = X_1 2X_2 + X_3$

ii. The *Variance* – cov *ariance* matrix of the random vector $\underline{Y} = (Y_1, Y_2)^T$ where $Y_1 = X_1 + X_2$ and $Y_2 = X_1 + X_2 + X_3$ (6marks)

b) Let X_i; i = 1, 2, ..., n be *iid* random vectors from N_p[μ, Σ]. Given that X̄ and S are M.L.E's of ^μ and Σ respectively.

- (i) Write down the typical elements of the vector \overline{X} and matrix S. (2marks)
- (ii) Give the expression for the Hotelling T^2 statistic and explain how you use it to test the hypotheses $H_0: \mu = \mu_0 \text{ v/s}$ $H_1: \mu \neq \mu_0$ (7marks)

Q5.

a) Suppose that y is ${}^{N_4[\mu, \Sigma]}$ where $\mu = \begin{pmatrix} 1 \\ 2 \\ 3 \\ -2 \end{pmatrix}, \Sigma = \begin{pmatrix} 4 & 2 & -1 & 2 \\ 2 & 6 & 3 & -2 \\ -1 & 3 & 5 & -4 \\ 2 & -2 & -4 & 4 \end{pmatrix}$

Find

(i)the joint marginal distribution of \mathcal{Y}_1 and \mathcal{Y}_3 (3marks)(ii) $\mathcal{P}_{_{1324}}$ (5marks)

(5marks)

b) Suppose that X = (X₁, X₂, X₃) has the 3-variate normal distribution with density f(x) = c exp. (-1/2Q) where Q = 1/17 (11x₁² + 7x₂² + 5x₃² - 6x₁x₂ - 4x₁x₃ - 2x₂x₃ + 2x₁ - 16x₂ - 22x₃ + 18).
i. Identify H and Σ. Hence find C. (7marks)
ii. Determine the distribution of Q and hence find k such that Pr.(Q > k) = 0.05

(5marks)

END